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Abstract—The realization of ultra-reliable low latency com-
munications (URLLC) is a highly relevant problem that remains
unsolved. Multi-connectivity (MC) is regarded as one of the main
enablers as it has the potential to boost reliability by orders of
magnitude. Typically, selection combining (SC) is implemented
due to its simplicity. However, it is not optimal regarding the
effective signal-to-noise ratio (SNR), in contrast to maximal-ratio
combining (MRC). Furthermore, research focus is typically led
on the outage probability only, but for reliable communications
also the temporal behavior is relevant, which is better reflected by
metrics like level crossing rate (LCR) and average fade duration
(AFD). In this paper, we introduce a transformation which
facilitates such an analysis by decoupling the dependence of the
envelope or SNR from their time derivatives in MRC. Thereby,
we present a thorough comparison between the investigated
schemes of not only the outage but also the temporal behavior.

Index Terms—Average fade duration (AFD), level crossing
rate (LCR), maximal-ratio combining (MRC), multi-connectivity
(MC), reliability

I. INTRODUCTION

Since the discussion around the fifth generation of mobile
networks (5G) began, ultra-reliable low latency communica-
tions (URLLC) has been a topic of significant interest among
researchers [1], [2]. While public 5G is now widely available,
it has primarily focused on delivering high data rates (similar
to its predecessor 4G) and has not fully delivered on the
promises of URLLC. Even private 5G measurement campaigns
have failed to meet these requirements [3]: the achieved
performance of 33 ms with 99.999 % or 15 ms with only 90 %
probability are far away from the desired ultra-reliable 1 ms
target. Requirements are set to increase even further with the
upcoming sixth generation (6G) [4], making the achievement
of URLLC a crucial challenge that remains unsolved.

Generally speaking, introducing redundancy is a well-
known way to increase reliability, also in wireless communi-
cations. By transmitting redundant information distributed in
space, time, and/or frequency, the added diversity can result
in significant improvements in reliability.! One standardized
approach to implement redundancy in URLLC is packet dupli-
cation [5], which involves transmitting copies of the same data
over multiple paths simultaneously. The strongest link is then
selected to retrieve the desired data using selection combining
(SC). However, this technique can lead to energy wastage on
the unused links. To address this issue, more sophisticated
schemes have been proposed, such as coding methods, as
demonstrated in [6], or coherent signal combining where the

"However, in the context of URLLC, the time domain might not be a
suitable option due to the stringent latency demands.

same data is transmitted, but the received signals are combined
coherently. The optimal linear combiner that maximizes the re-
sulting signal-to-noise ratio (SNR) is maximal-ratio combining
(MRC) and was first introduced in [7].

Reliability requirements in URLLC are typically expressed
in terms of outage probability, availability, or packet error rate
(PER) values. These values are extremely low (or high for
availability), often specified as five or more nines [4], and are
challenging to validate through simulations or measurements.
Consequently, mathematical models are a useful tool. For
example, [8] presents an analytical framework to analyze
multi-connectivity schemes, although it primarily focuses on
the outage probability. However, newer works such as [9],
[10] introduce novel dependability metrics that argue for the
relevance of not only the pure outage probability but also the
temporal behavior. This is because isolated errors typically
have a different impact than burst errors. In this context, the
level crossing rate (LCR) and the related average fade duration
(AFD) can provide insights for a given outage threshold and
form the basis for some of the aforementioned dependability
metrics, which also take temporal behavior into account.

The concept of the LCR dates back to Rice’s work in
1948 [11]. Consequently, the derived AFD can be considered
as fundamental knowledge for single channels, as it can be
found in standard textbooks [12]-[14]. However, results for
MRC are scarce, mainly due to the fact that the signal envelope
and its time derivative are not independent anymore, as is the
case with single-link channels [15]. Thus, evaluating the LCR
and AFD for MRC becomes more challenging. In spite of this,
Beaulieu et al. provide results for the MRC’s signal envelope in
a Ricean channel, which also includes the Rayleigh channel as
a special case [15]. However, defining a meaningful threshold
for the LCR and AFD in the case of MRC is difficult, since
MRC amplifies the signal and, consequently, the noise with
different factors over time. Alternatively, expressions for the
SNR would not only be more insightful but also allow for
comparison with the non-amplified single connectivity or SC.

In this paper, we present two major contributions:

1) The introduction of a simple transformation on the en-
velope of the MRC signal to decouple it from its time
derivative, facilitating the derivation of metrics like the
LCR and AFD.

2) The inclusion of the SNR in the analysis to provide a
meaningful perspective and make it comparable to other
schemes, particularly single link and SC. Additionally,
the authors provide an overview of the relevant metrics
for all of these schemes.



II. SYSTEM MODEL

In this section we will set up the stage for our analysis,
which will consider the perspective of a single user.

A. Single Link

For each link ¢, we consider the well-studied Rayleigh
channel as the fading model. So the utilized properties are
all textbook knowledge, which we will summarize here for
convenience and in order to introduce our notation.

In this work, we are not interested in the complex signal s;
itself but rather in its derived metrics envelope r;, power P;,
and the resulting SNR +;. First of all, we will consider the
envelope r;. Based on the assumptions of a Rayleigh channel,
it can be derived that the envelope is Rayleigh distributed
(hence, its name) [13, (3.32)], i.e.,

P,
r; :=|s;| ~ Rayleigh (2> (1)

and therefore, the probability density function (PDF) and
cumulative distribution function (CDF) are given by
2 _z2 _=2
fu@ =5 R, F@=1-c %, ©
P;
respectively. Therein, the only parameter is the average receive
power P;. From this, the power distribution simply follows
from the exchange of variables P; = 7‘? according to [13,
(3.33)]

P, = 7"1»2 ~ Exp (pfl) . 3)

We may use \; = ]5[1 equivalently as a parameter for the
exponential distribution.
Consequently, also the SNR is exponentially distributed, as
it is the power scaled by the noise mean power Ny
72 P.
i = — ~ Exp (5, Vi = —.
7= 5~ B (7). V=N
From the SNR distribution, we can directly formulate an
outage probability for a given SNR threshold 4

05 = Py <4] = Fy (7). 5)

This definition also holds equivalently for the combining
schemes discussed in Secs. III and IV.

In order to investigate the temporal behavior, we will also
need the distribution of the envelope’s time derivative, which
is given in [14, (1.3-34)] as

o4 >
Fii= T N(O,Ufi),

“4)

U?i = Wfolpi. (6)

Apart from the average receive power P, this variance also
depends on the maximum Doppler shift f,,. Accordingly, the
PDF of 7; is expressed by
1 1_ a2
fe (@) =

¢ TTRE (7
V 2773Pifm

In particular, [14] also states that the envelope r; and its
derivative r; are independent.

B. LCR and AFD

We are now interested in metrics that characterize the
temporal behavior of the system. In contrast to the distribution
of the envelope r; (or SNR ~; or signal power P;, respectively),
which can only tell us, up to which probability (or to which
time share) a metric will be below a certain threshold, the LCR
and AFD provide the information on how often this happens
and how long it takes on average.

In [11], Rice provides a formula of how many times a
general signal = crosses a given threshold & from below per
time unit, i.e., the LCR L; for this threshold Z:

L; = L Yfe,a (2, y)dy. ®)

It should be noted that even though this definition considers
only the direction from below, the rate is obviously the same
for the other direction, as the signal is continuous and every
crossing from below comes with one from above. Further, it
is worth noting that Eq. (8) requires the joint probability of
the considered metric and its time derivative.

The AFD can then directly be calculated from the LCR [13,
(3.46)] and the CDF as follows

Plz <z] Fp(2)
T; = P €))

Equipped with these fundamentals, we can now apply them
on the envelope for a single link. Thanks to the independence
stated at the end of Sec. II-A, Eq. (8) simplifies to

0
Lo = £,0) | ufilo)dy = £0) B 7> 0] (0w
0
7 fmV 27T
VP
by inserting Eq. (2) and the expectation of the normally
distributed derivative, conditioned on being positi\{e. Therein,
we used a similar short-hand notation p; := ﬁ as [13].

Inserting the LCR into Eq. (9) together with the exponential
CDF from Eq. (2) the AFD is obtained as

72
€T = pr fu/2me 0

(10b)

(1)

If we are now interested in these metrics for the SNR instead
of the envelope, we can derive them by a simple transformation
of the variable. Hence, for a given SNR threshold

52

P
Y = — 12
Y Ny’ (12)

we have 7 = 4/4Ny and therefore

Ly = A [202 fme™% = A/20C fme™, (13)
v
e% -1 eC —1
Ty = — = —. (14)
K 27Tifm 27T§fm
A/ 4TS v
Therein, we have introduced the ratio { = % of the SNR

threshold to its mean.



While for the single link the SNR is just a simple mapping
where one envelope value corresponds to one SNR value, we
will see in Sec. IV that in the MRC case, the situation will be
different.

C. Multiple Links

In the analysis that follows in Secs. III and IV, we will
extend the system model to L independent links, on which data
can be transmitted in parallel in order to exploit diversity. The
assumption of independence is crucial as it provides mathe-
matical tractability, but also allows for the largest diversity
gains. Even though this assumption is idealistic, it can be
achieved to a great extent by using resources that are suf-
ficiently separated in space (spatially distributed antennas) or
frequency (using carriers separated by more than the coherence
bandwidth). Further we restrict our analysis to links with the
same average SNR 4 = #; (or same mean receive power
P = P; and same noise power Ny, respectively), leading to in-
dependent and identically distributed (i.i.d.) random variables.

How exactly the data will be combined will be explained in
the subsequent sections. However, both studied schemes can
be described as a linear combiner

s = ZO&Z‘SZ‘.
i

The studied multi-connectivity (MC) approaches all rely on
the estimation of the individual links’ SNRs +;. In this work,
we assume that this estimation can be conducted perfectly.

15)

III. ANALYSIS OF SELECTION COMBINING (SC)

As another baseline, we will also describe shortly the most
simple diversity approach, wich is given by SC.

A. Preliminaries for SC

In SC, the receiver eAstimates the SNR of all links, and
simply chooses the link ¢ with the highest SNR

(16)

i= arg max-y;.

i
For the linear combiner in Eq. (15) this means that o; = 1
and «; = 0 for all 7 # 7. Hence, the SNR is simply given as

IsC = 7; = max7. a7
Due to the max operation, the following general relation-

ships for the CDFs and PDFs of the maximum of several

independent random variables X; will become handy

Fhaxx,; () =P[max X; < z] = HFXi (z) (18)
d
Fanax x, (%) = 7 Fnase X, ( fo 2) [ [Fx,(@). 19

J#i
If the L random variables are also identically distributed
Egs. (18) and (19) simplify as follows
FmaxXi (.T) = FX(:E)Lv
P x,(2) = Lfx () Fx ()"

(20)
21

B. Two i.i.d. Links

Using Eqgs. (20) and (21), we can directly express the CDF
and PDF for the SC of two links with equal mean SNR as

Fro(2) = (1 - e*%)2 , 22)

frool) = 2o % - (1-e77).

We observe that SC always chooses one of the signals and is
identical to that signal until another signal becomes stronger.
Therefore, except for these singular intersection points the
derivative 7gc of the combined signal, comes from one of
the individual signals. This is true almost everywhere?®, such
that the distribution of 7g¢ is a mixture of the distributions of
the individual 7;. Due to the assumption of i.i.d. links and the
independence of r; and r;, we can even conclude that rgc is
independent from rg¢ and distributed exactly as the individual
derivatives 1, and therefore f.., = f as given in Eq. (7).

With this knowledge, we can easily derive the LCR of the
envelope for a given threshold # as the joint PDF f, ;. is
decoupled into the product of the individual PDFs

“U\‘H.\;

(23)

0
Li = 5:0) | ufi(wdy 4)
0
— 2ppe "t . (1 _ e*ﬂi) or (25)
Conseqently the AFD is given as
Fo(7 i1
r,- B0 _ e (26)

Li 2p; - fu/271

Again, we can also provide the LCR and AFD for the SNR
passing a given threshold 4 by using the same transformation
as for Egs. (13) and (14)

Ly (1—e ) \/27C fme ™S,
et —1

Tr =g

IV. ANALYSIS OF MAXIMAL-RATIO COMBINING (MRC)

27

(28)

Similarly to the previous sections we will now study the
same metrics for the MRC scheme.
A. Preliminaries for MRC

For the implementation of MRC the signals are co-phased
such that the weighting factors «; look like
—i0i (29)

o; = Qe

Thanks to the co-phasing, we do not look into the complex
signal anymore, but only study the real valued envelope

TMRC = 0T (30)

2Sounding a bit unscientific, this is really meant in the mathematical sense,
meaning that the singular points have a probability of zero.



The aim of MRC is now to choose the weights a; wisely, such
that the resulting SNR is maximized. Following [13] we can
derive the following SNR

2 2
"MRC 1 (Xairi)
= = 31
TMRC Niot Ny Y a? G
<—1 E r? = E —T? = E ; (32)
=Ny i Ny V-

The inequality is a result of applying the Cauchy-Schwarz
inequality to the numerator. The Cauchy-Schwarz inequality
also tells us that e(;uality is achieved if and only if the weights
are set as a2 =5 (or scaled versions of that). That is why
MRC is achleved when all links are multiplied by their SNRs.

Now, the weights can be inserted into Eq. (30) in order to

obtain the envelope and its time derivative

1
TMRC = ) aiT; = WZUQ = v/ NomRe; (33)
0
. 2 .
TMRC = = > it (34)
0

What is often forgotten here is the fact that this combined
signal is an amplified signal and so also the noise is amplified,
as illustrated in Fig. 1. As can be seen in Fig. 1(a), a
threshold 7 on the envelope would be suitable for a comparison
of the individual links and SC, since they all experience the
same noise power. However, for MRC also the noise level
raises due to the weighting factors. In contrast, Fig. 1(b) shows
the SNR, which incorporates also the (amplified) noise. Hence,
the LCR and AFD are only meaningful for the SNR in order
to achieve a fair comparison.

As we consider i.i.d. links, all SNRs are exponentially
distributed with the same mean, and since y\prc is the sum
of the single SNRs, as shown in Eq. (32), it follows a Gamma
distribution

ymre ~ D(L, %), (35)
L1 .
f’YMRc (l‘) = me v. (36)

From this, we can also derive the PDF of the envelope by
transforming via the relationship given in Eq. (33)

x 1
f’l"MRC (SL’) = f'YMRC <m> \/7]\770 37
2L-1 e
= Nov | (38)
(LD VN3

For our analysis we will also need the distribution of the
envelope’s square root

0:= y/rMrc = v/ Noyv/IMRC, (39
whose PDF can be obtained by another transformation
f@(‘r) = fm@g) = fTMR,C (xQ) 2% (40)
2x2L71 =2
= e VNoi. (41)
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Fig. 1: Channels and combined channels over time.

B. Two i.i.d. Links

We will now study the special case of two i.i.d. links. As it
becomes evident in Egs. (33) and (34), the independence of the
envelope ryrc and its time derivative 7yrc cannot be stated
anymore, since both depend on the individual envelopes 7;.
Without the independence property, evaluating Rice’s formula
in Eq. (8) becomes cumbersome. To overcome this problem,
we propose in this work to look at the auxiliary variable g as
introduced in Eq. (39), which will turn out later to lead to a
decoupling.

For two links, the newly introduced auxiliary variables are
expressed as follows.

2 2
= A/TMRC = ry +r & (42)
/ 1 2 /
1”1?;1 +’I‘27’2 1
4 = . (43)
~ qrVIMRe \ﬁ JZ+rZ N

In these equations, we have introduced two further auxiliary
variables, £ and 7, in order to not carry the noise factor through
all following derivations.

From Eq. (41) we can extract the PDF of p for two links

2% 2L
fg(.%‘) = NO "_}/26 No7v |
We will now see that we will be able to express ¢ inde-

pendently from all r;. Therefore, we look at the auxiliary
variable 7

(44)

1 . T2 .
= 1+ r 45)
g N ! Nt ?
= Br1 + /1 — 327,. (46)



By introducing the coefficient 5 = % we have already reduced
r, and 7o to one parameter.’ It remains to show that the
random variable 3 is independent from r;, because then 7
(and therefore p) is independent from p.

As a first step, we look at the distribution of . Therefore,
we start with &2

E=ri+r; ~I(2,P) 47)
fer(x) = N2we 7, (48)

and obtain the PDF of ¢ through the transformation
fe(x) = fer(2?) - 22 = 203 \2e . (49)

We then study the distribution of ¢ for a fixed value of r;.
From the conditioned CDF

Fep (z) =P[§ < x\r1]=]P’[r§<x —ri|r] (50
=Fp (z® —r7), (51)
the conditioned PDF can be obtained as
0, T <7,
. = 52
Jeiri=a(v) {21‘)\6_)\($2_T%); T =71 (52)

Using Bayes’ formula, this can be translated into the distribu-
tion of r; conditioned on &

Frile=yl@) = fe(y) oY
Qy)\e_’\(y2_””2) 2zde™
= 2PN = y—Qx (&Z))
22
Frje=y(7) = — (55)
Y
for 0 < z < y. For other values of = the expression is simply

zero. Finally, this brings us to the conditioned CDF of (8

Fpje—y(z) =P [5 = zl )5 = y] (56)

=Pl <z{|[{=y]=

As can be seen, the distribution of S conditioned on & is
completely decoupled from &, such that both variables are
independent and Fjzg = Fjj¢. Accordingly, the PDF is simply
given as

Frije—y(x€) = z2. (57)

fa(z) = 2z, 0<z<l (58)

In particular, it becomes evident that 3 is not only indepen-
dent from &, but also from r; and r;.

Now that we know the independence, we can study Eq. (46),
which is a sum of independent normal variables. Thus, for a
fixed 5, we have

~ N (0, (B%0}

3The geometrical interpretation of this approach is a right triangle with the
legs 1 and r2. Then the coefficients of 71 and 72 in Eq. (45) refer to the
sine and cosine in such a triangle.

+(1-5%)03)) =N (0.07), (59

TABLE I: SIMULATION PARAMETERS

Average SNR ¥ 20dB
Number of samples Ng 107
Sampling time Ts 0.1 ms
Max. Doppler frequency  fm 100 Hz
Coherence time Teon 42ms [16, (4.40c)]
since 0% = 03 = 0. Hence, 7 is independent from 3
2
n~N(0,07). (60)
Finally, we obtain the distribution and variance of ¢ as
1 1 1 _
) = ~N o2 ol = T2 f2P. (61)
R KRNV ) MY i

C. LCR and AFD for MRC of Two i.i.d. Links

Thanks to our decoupling of variable and derivative by
introducing p, we are in the comfortable situation that the Rice
formula for the LCR of the envelope’s square root crossing a
threshold ¢ again falls into two factors

g=n@£2m@@=n@%J:

However, we are interested in the SNR and so we transform
the threshold by 4(%) = +/Ng+/4 and obtain

(62)

;|2
Ly = fo (VNov/3) 09\[ 63)
V3’ s \[
W /7 v 4 N fm/\/i (64)
— CFe fu/2m. (65)
Consequently, the AFD directly follows as

P [ymre < 9] Fyure (%) v (2,¢) e
T, = = = = ) 66
L P T

where < denotes the lower incomplete gamma function.
V. NUMERICAL VALIDATION AND EVALUATION

The analytical results will now be validated by comparing
them with numerical simulations.

A. Simulation Scenario

In order to validate the derived models, we used Matlab
2022b and its implementation of a Rayleigh channel from the
communications toolbox. It was configured to utilize the sum
of sinusoids technique and Jakes’ Doppler spectrum. Further
simulation parameters are summarized in Table I.

B. Distributions of MRC Metrics

Firstly, we study the distributions of the envelope, its square
root, and the respective time derivatives for the MRC scheme
in Fig. 2. Here, the SNR is not considered separately, since
in this case it is simply a scaled version of the envelope (cf.
Eq. (33)). The figure confirms a good agreement of the em-
pirical histograms and the model PDFs, where available. We
could not provide a model for the envelope’s derivative mvirc
in Fig. 2(b), but our proposed auxiliary variable g provided a
simple and accurate model for the derivative ¢ in Fig. 2(d).
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Fig. 2: Comparison of the empirical distributions from simulations with the derived models (where available) for the envelope r\rc and the square-rooted

envelope p as well as their derivatives in MRC. The legend applies to all plots.
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Fig. 3: Joint vs. product distributions from simulations.

C. Joint Distributions and Independence

Next, we want to have a look at Fig. 3. Therein, we show the
empirical joint and product distribution of the envelope mvirc
and the envelope’s square root o with their time derivatives,
respectively. The empirical joint distributions in Figs. 3(a)
and 3(c) are obtained as a two-dimensional histogram. In
contrast, for the product distributions in Figs. 3(b) and 3(d)
the histograms have been generated for both components
separately and multiplied afterwards.

Per definition, two random variables X € X and Y € ) are
independent, if they fulfill

fxy(z,y) = fx(x)- fy(y)

However, by comparing Figs. 3(a) and 3(b) it can be visually
observed that the shapes are systematically different: The left

Ve X,ye). (67)

plot opens like a fan, whereas the right plot is more triangular
shaped. In contrast, if we look at the plots of the proposed
transformation in Figs. 3(c) and 3(d), the results are the same
apart from some numerical and stochastic noise. In particular,
there is no systematic error visible.

Of course, these plots are only an empirical observation and
the differences may be more or less severe for different param-
eters, but the empirical data support the analytical statements
deducted in Sec. IV.

D. Outage, LCR, and AFD

Finally, we study how well our derivations allow us to
calculate the performance metrics outage, LCR, and AFD for
MRC. The results are shown in Fig. 4, where markers and
lines show results from simulations and models, respectively.
The dashed line shows the single link result for the doubled
SNR, which refers to an (approx.) 3 dB shift in the = direction.
This comparison is more fair, because it reflects the same total
power for the single link scheme as in the combined schemes.
However, the other comparison is also meaningful, because
the maximum power per link might be regulated.

We can make the following observations. First of all, the
models match the simulation results almost perfectly, which
was our primary goal. A small mismatch appears only for the
smaller SNR thresholds, where the simulation accuracy suffers
as outage and fade durations are harder to observe when the
signal falls below the threshold only extremely rarely (As can
be seen, there are no fades observed by the two combining
schemes at all for 4 < —12dB and hence no data points for
LCR and AFD). However, the models allow also to look into
these regions relevant for URLLC.

In Fig. 4(a), the expected behavior can be observed. The
MC schemes leverage the outage by orders of magnitude
(e.g., from 1072 to 10™* at 4 = 0dB). As the outage
probability scales with O for SC (and even better for MRC),
the MC schemes benefit even more for small tolerated SNR
thresholds %, where the single link outage is already low.
In particular, it becomes evident that increasing the transmit
power in the single link scheme by factor two results in the
same total power but hardly brings benefits as compared to the
MC schemes. However, for large thresholds the gains diminish,
so none of the schemes can compensate small fading margins.
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Fig. 4: Performance of the investigated schemes and validation of the models (lines) with simulation data (markers). The legend applies to all plots.

As for the LCR in Fig. 4(b), we can observe that the
MC schemes can maintain very low rates up to 4 ~ 10dB.
This is due to the fact that deep fades are much less likely
for these schemes as can be seen in Fig. 1(b). In the short
interval depicted there, 4 ~ 10dB is never touched by the
MC schemes, but the single link curves cross it several times.
Here, doubling the power of a single link also does not really
help, as the deep fades remain deep after a 3dB shift. Only
for higher thresholds, the LCRs are comparable.

Finally, in Fig. 4(c) almost parallel curves for the AFD
can be observed, especially in the region 4 < 20dB, where
the lines are almost linear (in the log scale) and parallel.
The distance is roughly a factor of two in this region, which
would translate to twice as many consecutive packet errors.
For higher thresholds, the curves converge, only the dashed
line keeps its distance, as it is only a shifted version of the
single link line. Hence, a single link with twice the power
would be even superior over the MC schemes with respect to
the AFD for high SNR thresholds. However, this region is less
interesting for URLLC.

VI. CONCLUSION AND OUTLOOK

By introducing the transformation by a square root we have
decoupled the envelope (or the signal-to-noise ratio (SNR))
and its time derivative in maximal-ratio combining (MRC),
facilitating further analysis, e. g., to derive the level crossing
rate (LCR) and average fade duration (AFD). We stated the
importance of studying and comparing the SNR, since in
MRC not only the signal but also the noise is amplified and,
thus, thresholds on the envelope are not comparable to other
schemes. Accordingly, we conducted the analysis for single
links, selection combining (SC), and MRC and were able to
compare not only outage but also the temporal behavior for
single links, SC, and MRC.

This work is mainly about the introduction of the square
root transformation and was therefore exemplary conducted
with two links and Rayleigh fading as a simple model. Future
studies will generalize the models in these regards.
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