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Abstract—We propose a quantization scheme for log-likelihood
ratios which optimizes the trade-off between rate and accuracy
in the sense of rate distortion theory: as distortion measure we
use mutual information to determine quantization and decision
levels maximizing mutual information for a given rate over
a Gaussian channel. This approach is slightly superior to the
previously proposed idea of applying theLloyd-Max algorithm
to the ’soft bit’ density associated to theL-values. A further data
rate reduction can be achieved withentropy coding, because the
optimum quantization levels based on mutual information are
used with pronounced unequal probabilities.

Index Terms—Mutual information, soft bits, quantization,
entropy coding, iterative decoding

I. I NTRODUCTION

In many signal processing applications concatenated mod-
ules exchange probabilities to perform certain tasks in a
given signal processing chain or even do this iteratively to
process the data. For digital processing the signals are typically
represented by bits in binary form and so-called log-likelihood
ratios (abbreviated as LLRs orL-values in the following)
occur and have to be communicated with finite precision.
The necessary quantization step inevitably causes quantization
noise equivalent to information loss in the system.

In [1] we presented a quantization scheme of log-likelihood
ratios L(X) using ’soft bits’ Λ(X) related to coded or
information bits X and their associatedL-values through
Λ(X) = E{X} = tanh(L(X)/2) [2]. The underlying
idea is the intuitive consideration, that a (typically Gaussian)
density that extends to±∞ is more difficult to quantize
than some transformed variable that shows saturation with
increasing reliability (magnitude) of theL-value. Based on
a closed form expression for the transformed soft bit density
that we had derived,Lloyd’s optimum algorithm for scalar
quantization [3], [4] could be conveniently applied to derive
decision and reconstruction(quantization) levelsdi and ri,
respectively. We also showed that the loss of mutual infor-
mation due to quantization was clearly smaller with soft bit
based quantization than with ’direct’ quantization of theL-
value density.

One might ask, whether the mean square error (or some
more general norm) is really the best optimization criterion in
such a case. Recognizing that the loss in mutual information
(w.r.t. to unquantizedL-values) can be taken as the cost func-
tion to determine the quantizer levels, it is possible to replace
the MSE minimization employed byLloyd’s optimum scalar
quantization to the soft bit density by a direct minimization

of the mutual information loss. This leads to our new quanti-
zation scheme: a maximization of mutual information of the
quantizedL-value density w.r.t. thedi andri.

In the following we carry out this idea. Taking the optimum
scalar quantization ofL-value and soft bit densities as a
reference (Section II) the mutual information between the
binary variableX and its log-likelihood ratioL is maximized
in Section III. The possibility to further reduce the required
data rate using entropy coding is demonstrated in Section IV.
A performance example is given by decoding a turbo code
with quantizedL-values in Section V.

II. SCALAR QUANTIZATION OF L-VALUES AND

ASSOCIATEDSOFT-BIT DENSITIES

Assume that after processing a received signal, bit prob-
abilites (e.g. a-posteriori probabilities at the decoder output)
represented as log-likelihood ratios have to be communicated
to another module or location. Let us also assume a Gaussian
channel1 y = x + n with noise varianceσ2

n for which the
L-values are related to the channel output asl = (2/σ2

n)y.
The conditional density2 pL|X(l|x), conditioned on one of the
channel inputsx = +1 or x = −1, is also Gaussian [5], [6]
with varianceσ2

L = 4/σ2
n. Furthermore it depends only on the

single parameterσL, because mean and variance are related
by µL = σ2

L/2. Thus the unconditionedL-value density for
equally likely input valuesx = ±1 follows a bimodal Gaussian
distribution3:
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Intuitively one expects, that the precision with which a
certainL-value has to be represented by the quantizer varies
with its magnitude:L-values of large magnitude neednot be
represented as precisely as small ones, while the transition
range from low to high reliability might benefit from increased
reconstruction level density.

Therefore the description ofL-values in terms of ’soft
bits’ appears appropriate: while the GaussianL-value den-
sity extends to±∞, soft bits λ(l) related toL-values by

1This includes AWGN and flat Rayleigh channels, but also holds approxi-
mately due to the central limit theorem for large block size in general.

2We denote random variables such asX, L(X) and Λ(X) with capital
letters and their realizationsx, l andλ in lower case.

3The variance of this density isσ2

L
+σ4

L
/4. We will use, however,σ2

L
the

variance of theconditionaldensity as parameter throughout.
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the hyperbolic tangent only cover the range[−1, 1]. Scalar
quantization according toLloyd [3] and Max [4], optimum in
the sense of minimizing the mean square error (MSE) between
the quantized and non-quantized densities, therefore should
rather be applied to the soft bit density, where levels will not
be wasted at a wide range of large magnitudes to keep the
quadratic error small, while the associated change in reliability
is already quite small.

Using the standard normal distributionG(η) =
(1/

√
2π)

∫ η

−∞ e−ξ2/2dξ we obtained the probability
Pr(L(X) ≤ η) which can be converted with the inverse soft
bit L(X) = 2 tanh−1(Λ(X)) to the equivalent probability
Pr(tanh−1(Λ(X)) ≤ η) expressed in terms of soft bits.
Taking the derivative of this distribution function we derived
the soft bit densitypΛ(λ) in closed form as [1]:

pΛ(λ) = 1
(1−λ2)
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Examples of the involved densites defined by Eqs. (1), (2)
are illustrated in [1], where also plots of the optimized
reconstruction and decison levelsri and di, determined with
optimum scalar quantization for different numbersb = ldR
of quantizer bits4, as a function of the varianceσ2

L of the
(conditioned)L-values can be found.

III. M INIMIZATION OF THE MUTUAL INFORMATION LOSS

DUE TO QUANTIZATION

Given the setsri and di the mutual informationI(X;L)
between the binary variableX ∈ {−1,+1} and its quantized
(discrete) and non-quantized continuousL-value densities can
be calculated. For a continuous density using the symmetry
and consistency [5] ofL-values we have

Ic(X;L) =
∑

x=±1

∞
∫

−∞

p(l|x)

2
ld

2p(l|x)
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dl

=
1

2
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p(l|x) [1 − ld(1 + e−lx)]dl . (3)

For a Gaussian channel the integration in the discrete
(quantized) case is easily carried out. Expanding the sum over
the two possible bit levels5 of the information bitX ∈ {±1}
the mutual information betweenX and its quantized log-
likelihood ratioL(X) can be written as6
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4Logarithms w.r.t. base 2 and natural logarithms are denoted asld(·) and
ln(·) throughout the paper.

5Due to symmetry the sum over the two bit levels actually can be skipped;
it is only relevant when taking derivatives.

6The standard normal distributionG(η) could here be used again. We used
the error function for practical evaluation instead, because it is commonly
available in math packages.

The difference between the two mutual informations represents
the information lossdue to quantization:∆I = Iq − Ic. To
minimize this loss we use the derivatives ofIq. W.r.t. the
reconstruction levelsri (1 ≤ i ≤ R) they are given by
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The derivatives w.r.t. the decision levelsdi (1 ≤ i ≤ R+1)
are given by

∂Iq

∂di
=
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Optimum levels in terms of mutual information loss were
determined by maximizing the mutual informationIq of the
quantizedL-value density by a steepest ascent technique (we
alternatingly optimized the two level types in the spirit of
Lloyd’s algorithm for several iterations).
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Fig. 1. Comparison of optimized reconstruction and decision levels for
R = 5 levels: Lloyd’s algorithm applied to LLR- and soft bit densities vs.
maximisation of mutual information.

Example results are presented forR = 5 reconstruction
levels (4 finite decision levels; the decision levelsd1 and
dR+1 have the values±∞ independent of the method of
quantization) in Fig. 1. Due to symmetry two level pairs
occur for both reconstruction and decision levels which only
differ in sign while the5th reconstruction level is exactly
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zero independent of theL-value variance. Therefore only
positive levels are shown as a function ofσ2

L comparing LLR
and soft bit quantization with the scheme maximizing mutual
information.

We note that the levels due to soft bit quantization show
the expected saturation with increasingL-value magnitude
(increasing varianceσ2

L). This effect is less pronounced after
maximizing the mutual informationIq. Apart from optimizing
the levels directly w.r.t. the nonlinear expression for themutual
information, a new degree of freedom that can be exploited
with the latter scheme is the independent optimization of
the decision levels which do not have to be the mean of
the neighboring reconstruction levels (corresponding to 1D-
Voronoi regions, when viewed as a special case of vector quan-
tization). This allows to reduce the loss in mutual information
as shown in Fig. 2.
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Fig. 2. Comparison of the mutual information loss∆I between quantized
and not quantizedL-values as a function of the average mutual information of
theL-values: LLR vs. mutual information optmization and soft bit vs. mutual
information optimization forR = 2 − 8 reconstruction levels.

We note a relatively large reduction of the mutual informa-
tion loss (decreasing with increasing number of levels), when
the LLR-based quantization is replaced by the maximizationof
the mutual information. This is shown forR = 2, 3, 4, 5, 6, 8
reconstruction levels. The comparison between the soft bit
quantisation and the mutual information maximization shows
that with soft bits a large portion of the loss can already be
avoided (note the different scale of the ordinates in Fig. 2),
although still up to 1/4 of this loss can be saved with the
separate optimization of the decision levels. Here the case

fitting parameter a b c

R = 2, r1 0.4473 0.2806 0.1075
R = 3, r1 0.6865 0.4861 0.0955
R = 3, d1 0.218 0.4082 -0.01687
R = 4, r1 0.1305 0.3251 -0.01053
R = 4, r2 0.8214 0.6343 0.08861
R = 4, d1 0.33 0.6509 -0.02219
R = 5, r1 0.2361 0.5248 -0.01938
R = 5, r2 0.9179 0.7457 0.08219
R = 5, d1 0.1605 0.2223 -0.01146
R = 5, d2 0.3924 0.8367 -0.02881
R = 6, r1 0.1299 0.1831 -0.009314
R = 6, r2 0.3312 0.6499 -0.02541
R = 6, r3 1.002 0.8184 0.07718
R = 6, d1 0.2813 0.3667 -0.01879
R = 6, d2 0.4546 0.9589 -0.03378
R = 8, r1 0.1358 0.09532 -0.006295
R = 8, r2 0.3794 0.3377 -0.01972
R = 8, r3 0.5314 0.7521 -0.03236
R = 8, r4 1.179 0.8661 0.07178
R = 8, d1 0.2737 0.199 -0.01278
R = 8, d2 0.4993 0.4999 -0.02727
R = 8, d3 0.611 1.063 -0.0398

TABLE I
FITTING PARAMETERS FORR = 2, 3, 4, 5, 6, 8 RECONSTRUCTION LEVELS.

R = 2 is special, because this degree of freedom is not yet
available, so that both schemes are equivalent.

For hardware implementation a look-up table with inter-
polation could be used. More practical, however, is to use
curve fitting based on an appropriate approximating function.
In this case an expansion in terms ofσL works well. Fits with
f(σL) = a

√
σL + bσL + cσ2

L) provided mean square errors in
the range0 ≤ σ2

L ≤ 100 of the order10−3. Table I collects
the coefficients forR = 2 − 8 reconstruction levels.

IV. A DDITIONAL RATE REDUCTION WITH ENTROPY

CODING

Another observation concerns the probabilitiesPi with
which different quantization levels are used: while quantiza-
tion of the LLR density with theLloyd-Max algorithm leads
to more or less uniformly used levels,L-value quantization
based on mutual information or soft bits causes significant
differences in probability which depends onσ2

L.
This can be exploited with a well-known technique referred

to asentropy coding[7], [8] that assigns quantization labels of
different length using a prefix-free code either to the individual
levels or to groups of them, if severalL-values are represented
jointly. A lower bound for the required average label length
is given by the entropy of the quantization levelsHR(Lq) =

−∑R
i=1 Pi log Pi + (1 − Pi) log(1 − Pi).

We compare this bound for LLR quantization based on
mutual information and theLloyd-Max algorithm applied to
the L-value density in Fig. 3 again as a function ofσ2

L. In
addition we computed the practically achievable rate reduction
using Huffman coding in 3 dimensions. This corresponds
to the staircase functions lying above the bounding entropy
curves.
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Fig. 3. Entropy comparison ofL-values quantized based on mutual
information (left) or theLloyd-Max algorithm (right) as a function ofσ2

L

and the average label length achievable with 3D Huffman coding.

V. A PPLICATION OF QUANTIZEDL-VALUES

As a test case for the proposed LLR quantization scheme
we studied decoding of a parallel concatenated convolutional
code (PCCC). The extrinsic information obtained from the
decoder output with the BCJR algorithm (applying the max.
Log-MAP approximation) was exchanged either after direct
LLR quantization, soft bit quantization or quantization based
on maximizing the mutual information forR = 2, 3, 4, 8
levels by the two companion decoders. As a reference the
unquantized representation of the a-priori information was
taken. We used a simple recursive systematic PCCC with
generatorsG = [1, 5/7]8 block length N = 2000 with
a random interleaver punctured to obtain rate 1/2. Results
comparing the three quantization schemes are presented in
Fig. 4.

The variance of the LLRs was adaptively determined at the
MAP decoder output from the observed variance ofL(X), the
LLR of the code bits. The fitting functions (the coefficients
from Table I) were used to obtain the new quantization levels
in each decoder iteration. For variances larger thanσ2

L = 100
the levels for that value were taken and the currentL-value
distribution was scaled accordingly to maintain the information
about the relative magnitude among theL-values (one could
stop iterating here, too). The findings here can be compared
with the observations in [9], where quantization of all involved
quantities in the Log-MAP algorithm was studied. The results
for LLR quantization in the upper plot are markedly worse
than the other two schemes, because quantization levels are
wasted at largeL-value magnitude. In the lower plot the soft
bit quantization (dashed lines) is slightly worse than the mutual
information based technique, consistent with Fig. 2.

VI. CONCLUDING REMARKS

Distinguishing three quantization schemes, we showed that
a significant gain is possible, if LLR values are not quan-
tized ’directly’ with the Lloyd-Max algorithm. Rather soft
bits or even slightly better mutual information provide better
cost functions. We quantified this with the loss in mutual
information, demonstrating the improvement with a turbo
decoding example. Although the proposed scheme strictly
applies only to Gaussian channels, it should also be of interest
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Fig. 4. Log-MAP decoding of a PCC code (G = [1, 5/7]8, blocklength
N = 2000, AWGN channel) with quantized extrinsic information.

for coded transmission over fading channels, if a Gaussian
approximation for theL-value density at the decoder output
is applicable. An extension from scalar to vector quantization
is feasible by generalizing Eqs. (3) and (4) to vectors. The
interesting question, how much can be gained by the additional
degrees of freedom from more dimensions remains as an open
problem for future work.
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