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Abstract—We propose a quantization scheme for log-likelihood of the mutual information loss. This leads to our new quanti-
ratios which optimizes the trade-off between rate and accuracy zation scheme: a maximization of mutual information of the
in the sense of rate distortion theory: as distortion measure we quantizedZ-value density w.r.t. thel; andr.

use mutual information to determine quantization and decision In the followi t this id Takina th fi
levels maximizing mutual information for a given rate over nthefo 0‘("'”9 we carry out this idea. E,‘ ing 'e'op imum
a Gaussian channel. This approach is slightly superior to the Scalar quantization of.-value and soft bit densities as a
previously proposed idea of applying theLloyd-Max algorithm  reference (Section IlI) the mutual information between the
to the 'soft bit’ density associated to theL-values. A further data  binary variableX and its log-likelihood ratial is maximized
rate reduction can be achieved withentropy coding, because the i, gection I11. The possibility to further reduce the reuir
optimum quantization levels based on mutual information are . o . .
data rate using entropy coding is demonstrated in Section IV

used with pronounced unequal probabilities. TS .
A performance example is given by decoding a turbo code
Index Terms—Mutual information, soft bits, quantization, jith quantizedL-values in Section V.

entropy coding, iterative decoding
Il. SCALAR QUANTIZATION OF L-VALUES AND

I. INTRODUCTION ASSOCIATEDSOFT-BIT DENSITIES

In many signal processing applications concatenated modAssume that after processing a received signal, bit prob-
ules exchange probabilities to perform certain tasks in a@®ilites (e.g. a-posteriori probabilities at the decodetpat)
given signal processing chain or even do this iteratively fgpresented as log-likelihood ratios have to be commuedcat
process the data. For digital processing the signals areajyp t0 another module or location. Let us also assume a Gaussian
represented by bits in binary form and so-called log-liketid channel y = x + n with noise variances? for which the
ratios (abbreviated as LLRs aE-values in the following) L-values are related to the channel outputias (2/07)y.
occur and have to be communicated with finite precisiomhe conditional densifyp,, x (I+), conditioned on one of the
The necessary quantization step inevitably causes qasintiz channel inputse = +1 or z = —1, is also Gaussian [5], [6]
noise equivalent to information loss in the system. with varianceo} = 4/o7. Furthermore it depends only on the

In [1] we presented a quantization scheme of log-likelihocgingle parametes;,, because mean and variance are related
ratios L(X) using 'soft bits’ A(X) related to coded or by . = o7 /2. Thus the unconditioned-value density for
information bits X and their associated-values through equally likely input values: = +1 follows a bimodal Gaussian
AX) = E{X} = tanh(L(X)/2) [2]. The underlying distributior:
idea is the intuitive consideration, that a (typically Gsias) N o1 -y %y
density that extends tatoo is more difficult to quantize PZ() = 2750, exp (= 57—) +exp (— o)
than some transformed variable that shows saturation with . 2
increasing reliability (magnitude) of thé-value. Based on = %{N(UQL,U%) +N(UQL’U%)} 1)
a closed form expression for the transformed soft bit dgnsit
that we had derivedLloyd’'s optimum algorithm for scalar

quantization [3], [4] could be conveniently applied to deri with its magnitude:L-values of large magnitude needt be

decision and reconstruction(quantization) levelsi; and r;, ted el I hile the t i
respectively. We also showed that the loss of mutual infocPresented as precisely as smail ones, while the tramsitio
nge from low to high reliability might benefit from incresbs

mation due to quantization was clearly smaller with soft bift

based quantization than with ’direct’ quantization of the reconstruction level der_13|_ty. .
value density. Therefore the description of-values in terms of soft

One might ask, whether the mean square error (or sorts?l:tés :)22?13;3 tzipropgg:?b;{[vshiel threelgzgsfﬂw\?;ﬁfe:e; i
more general norm) is really the best optimization critefio y o0 (1) y
such a case. Recognizing that the loss in mutual informatiorThis includes AWGN and flat Rayleigh channels, but also hofssaxi-
(w.r.t. to unquantized.-values) can be taken as the cost fungvately due to the central limit theorem for large block size émeyal.
tion to determine the quantizer levels, it is possible tdaep e denote random variables such.8s L(.X) and A(X) with capital

S . . letters and their realizations, ! and X in lower case.
the MSE minimization employed biloyd's optimum scalar

Sl ! : - Thstalal 3The variance of this density is? + o /4. We will use, howeverg? the
guantization to the soft bit density by a direct minimizatio variance of theconditional density as parameter throughout.

Intuitively one expects, that the precision with which a
certain L-value has to be represented by the quantizer varies
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the hyperbolic tangent only cover the rangel, 1]. Scalar The difference between the two mutual informations represe
quantization according tbloyd [3] and Max [4], optimum in the information lossdue to quantizationAl = I, — I.. To
the sense of minimizing the mean square error (MSE) betweminimize this loss we use the derivatives ff. W.r.t. the
the quantized and non-quantized densities, thereforelghoreconstruction levels; (1 < i < R) they are given by

rather be applied to the soft bit density, where levels wilt n

d;
be wasted at a wide range of large magnitudes to keep the 0l 1 e " or (l - /@) o
guadratic error small, while the associated change inhiditia ar; 4In21+e " V207,
is already quite small. ‘f;M
Using the standard normal distributionG(n) = 1 e I+ pr 5
(1/v27) [" e €/2d¢  we obtained the probability TAm2lten o (\/§UL> ; ()

Pr(L(X) < n) which can be converted with the inverse soft o o
bit L(X) = 2tanh™'(A(X)) to the equivalent probability =~ The derivatives w.r.t. the decision levels(l <i < R +1)
Pr(tanh~'(A(X)) < 7n) expressed in terms of soft bits.are given by

Taking the derivative of this distribution function we dexi oI, 1 1+e i ( (d; — ,LLL)Q)
the soft bit densitya (A) in closed form as [1]: = ld————exp(— —55")
od; 2/2mo;, 1+e Ti-t 20‘L
_ 1 _ (tanh™'a-0?)%y 1 14 e d; + 2
AN = G55 vEen {exp( 802 ) +3 T Ay exp (- ( 2UlQLAL) ). (6)
-1 25\2
+exp (— Wﬂ . (2) Optimum levels in terms of mutual information loss were

) ) ) determined by maximizing the mutual informatidp of the
Examples of the involved densites defined by Egs. (1), (@iantizedZ-value density by a steepest ascent technique (we

are illustrated in [1], where also plots of the optimizediernatingly optimized the two level types in the spirit of
reconstruction and decison levels and d;, determined with Lloyd’s algorithm for several iterations).

optimum scalar quantization for different numbeérs= 1d R
of quantizer bit§, as a function of the variance? of the Reconstruction Levels

(conditioned)L-values can be found. 20 R=5

IIl. M INIMIZATION OF THE MUTUAL INFORMATION LOSS
DUE TO QUANTIZATION

Given the sets; andd; the mutual information/ (X; L)
between the binary variabl® € {—1,+1} and its quantized
(discrete) and non-quantized continudusalue densities can
be calculated. For a continuous density using the symmetry 5-
and consistency [5] of.-values we have
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soft bit quant]
ol oo —— 00— o9

(X5 L) > / s =) 1= % K
T 20 ‘ Decision Levels
1 7 R=5
= 3 1—1d(1+ e '")]dl.
;Y [rtmnuaseta @

For a Gaussian channel the integration in the discrete _
(quantized) case is easily carried out. Expanding the stan ov ©
the two possible bit levetsof the information bitX € {+1}
the mutual information betweeX and its quantized log- 5¢
likelihood ratio L(X) can be written &

OO T

— ”“’#’J‘%—r—’;ﬁﬁfax.‘ MI .
-~ __-soft bit qugnt.
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R dit1 ey " ; :
1 oy l—pr 0 10 20 2 30 40 50
I,(X;L) = 72[1—1(1(14—6 "] erf< ) o
4 i1 \/iO’L 4,
dit1 Fig. 1. Comparison of optimized reconstruction and decis®rels for

4 R = 5 levels: Lloyd's algorithm applied to LLR- and soft bit densities vs.
( ) maximisation of mutual information.

I —1d(1 4 )] erf<l\/+§’”)
or

d;
Example results are presented fBr = 5 reconstruction

4Logarithms w.r.t. base 2 and natural logarithms are denotdd (asand | ls (4 finite decisi | s the decisi level d
_ _5Due to symmetry the sum over the two bit levels actually can fgpekl;  dpq have the valuestoo independent of the method of
itis only relevant when taking derivatives. quantization) in Fig. 1. Due to symmetry two level pairs

6The standard normal distributid®(r) could here be used again. We used for both tructi d decisi | | hi |
the error function for practical evaluation instead, beeait is commonly occur for both reconstruction an ecision levels w |cry0n

available in math packages. differ in sign while the5'™™ reconstruction level is exactly



[ fitting parameter| a [b [ ¢ ]
0.4473 | 0.2806 0.1075
0.6865 | 0.4861 0.0955
0.218 0.4082 -0.01687
0.1305 | 0.3251 -0.01053
0.8214 | 0.6343 0.08861
0.33 0.6509 -0.02219
0.2361 | 0.5248 -0.01938
0.9179 | 0.7457 0.08219
0.1605 | 0.2223 -0.01146
0.3924 | 0.8367 -0.02881
0.1299 | 0.1831 -0.009314
0.3312 | 0.6499 -0.02541
1.002 0.8184 0.07718
0.2813 | 0.3667 | -0.01879
0.4546 | 0.9589 | -0.03378
0.1358 | 0.09532 | -0.006295
0.3794 | 0.3377 -0.01972
0.5314 | 0.7521 | -0.03236
1.179 0.8661 0.07178
0.2737 | 0.199 -0.01278
0.4993 | 0.4999 | -0.02727
0.611 1.063 -0.0398

zero independent of thd-value variance. Therefore only
positive levels are shown as a functionaf comparing LLR
and soft bit quantization with the scheme maximizing mutual
information.

We note that the levels due to soft bit quantization show
the expected saturation with increasidgvalue magnitude
(increasing variance?). This effect is less pronounced after
maximizing the mutual informatiod,. Apart from optimizing
the levels directly w.r.t. the nonlinear expression fornaual
information, a new degree of freedom that can be exploited
with the latter scheme is the independent optimization of
the decision levels which do not have to be the mean of
the neighboring reconstruction levels (corresponding e 1
\Voronoi regions, when viewed as a special case of vector-quan
tization). This allows to reduce the loss in mutual inforioat
as shown in Fig. 2.
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TABLE |
¥ -0.04 FITTING PARAMETERS FORR = 2,3,4,5,6,8 RECONSTRUCTION LEVELS
(%]
S
§ -0.08
IS
E 012
e Ml quiit R = 2 is special, because this degree of freedom is not yet
= -0.16 - available, so that both schemes are equivalent.
g LLR quant. -~ For hardware implementation a look-up table with inter-
2 02 R=234568 polation could be used. More practical, however, is to use
R R R N R B e = il curve fitting based on an appropriate approximating functio
0 01 02 03 0-4I (0-_5 )0-6 07 08 09 1 In this case an expansion in termscgf works well. Fits with
' f(or) = a\/oL +bor, + co?) provided mean square errors in
the range0 < o2 < 100 of the order10—3. Table | collects
— 00d \ the coefficients forR = 2 — 8 reconstruction levels.
i
S
c ~0.04
g ~0.08 V. ADDITIONAL RATE REDUCTION WITH ENTROPY
S CODING
£ -0.08
T . : - .
2 0. soft bit quant. | Another observation concerns the probabiliti&s with
s R=2,3,4,5,6,8 which different quantization levels are used: while queati
-0.12 e — tion of the LLR density with thd_loyd-Max algorithm leads
0 01 02 03 04 05 06 07 08 09 1 to more or less uniformly used levelg-value quantization

(X;L) based on mutual information or soft bits causes significant
differences in probability which depends of.
Fig. 2. Comparison of the mutual information loAs’ between quantized  This can be exploited with a well-known technique referred
e e anaatos ooerssenans ot s 10 asentiopy coding7), ] that assigns quantization abels of
information optimization forR = 2 — 8 reconstruction levels. different length using a prefix-free code either to the idiial
levels or to groups of them, if severilvalues are represented
We note a relatively large reduction of the mutual informdointly. A lower bound for the required average label length
tion loss (decreasing with increasing number of levels)emvh iS glven by the entropy of the quantization levefs;(L,) =
the LLR-based quantization is replaced by the maximizaion — Y"1, P, log P; + (1 — P;)log(1 — P;).
the mutual information. This is shown fa2 = 2,3,4,5,6,8 We compare this bound for LLR quantization based on
reconstruction levels. The comparison between the soft biutual information and th&loyd-Max algorithm applied to
quantisation and the mutual information maximization skowhe L-value density in Fig. 3 again as a function @f. In
that with soft bits a large portion of the loss can already kaddition we computed the practically achievable rate rédoc
avoided (note the different scale of the ordinates in Fig. 2)sing Huffman coding in 3 dimensions. This corresponds
although still up to 1/4 of this loss can be saved with thi® the staircase functions lying above the bounding entropy
separate optimization of the decision levels. Here the casarves.
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Fig. 3. Entropy comparison ofL-values quantized based on mutual
information (left) or theLloyd-Max algorithm (right) as a function ofr% 10
and the average label length achievable with 3D Huffman @pdin

\ max. mut. inform. vs. soft bit quantisatidn

V. APPLICATION OF QUANTIZED L-VALUES

As a test case for the proposed LLR quantization schen
we studied decoding of a parallel concatenated convolation © 10
code (PCCC). The extrinsic information obtained from the 5
decoder output with the BCJR algorithm (applying the max
Log-MAP approximation) was exchanged either after direc 10° | " " "% '
LLR quantization, soft bit quantization or quantizatiorsbe 10’ bits, min. 500 bit err.
on maximizing the mutual information fokR = 2,3,4,8 10, 05 1 15 2 25 3 35 4
levels by the two companion decoders. As a reference tt EJ/N, [dB]
unquantized representation of the a-priori informationswa
taken. We used a simple recursive systematic PCCC W]F(ﬁ'_
generatorsG = [1,5/7]s block length N = 2000 with a
a random interleaver punctured to obtain rate 1/2. Results

comparing the three quantization schemes are presentedoincoded transmission over fading channels, if a Gaussian
Fig. 4. approximation for theL-value density at the decoder output
The variance of the LLRs was adaptively determined at th¢ applicable. An extension from scalar to vector quaritizat
MAP decoder output from the observed variancd X ), the js feasible by generalizing Eqgs. (3) and (4) to vectors. The
LLR of the code bits. The fitting functions (the coefﬁcient%teresting question, how much can be gained by the addition

from Table I) were used to obtain the new quantization levelegrees of freedom from more dimensions remains as an open
in each decoder iteration. For variances larger than= 100 problem for future work.
the levels for that value were taken and the currentalue
distribution was scaled apcordlngly to maintain the infation REFERENCES
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G =[7,5], L = 2000, 6 it

4. Log-MAP decoding of a PCC cod& (= [1,5/7]s, blocklength
2000, AWGN channel) with quantized extrinsic information.





