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Abstract—1-bit analog-to-digital conversion is very attractive ce. The authors of [6] have derived the capacity of AWGN
for low-complexity communications receivers. A major drawback  channels (not band-limited) with 1-bit output quantizatand
is, however, the small spectral efficiency when sampling aymbol arbitrary integer oversampling for low signal-to-noiseioa

rate. This can be improved through oversampling by exploithg .
the signal distortion caused by the transmission channel. fAis (SNR). The achievable data rate of complex-valued AWGN

paper analyzes the achievable data rate of band-limited comu-  channels with 1-bit quantization and oversampling has been
nications channels that are subject to additive noise and ter- analyzed for arbitrary SNRs in [2]. By considering conven-
symbol-interference with 1-bit quantization and oversamging at  tional modulation schemes such as 16-QAM, it has been
the receiver. It is shown that not only the channel noise but lzo shown that the channel noise can be utilized as dither sig-
the inter-symbol-interference can be exploited to benefitrbm . . o .
oversampling. nal that increases the effective, quantization resolutiod
|. INTRODUCTION allows to detect higher-order modulation schemes even with
Multi-bit analog-to-digital converters (ADCSs) at the raes 1-bit qu_antization. The analysi; has been pursugd in [3]’ .by
require an analog gain control to adjust the received signcf}lcu'a.tt'ng thbe Ichanr;e:l ctgpac:cty ansltthe (:Sal\;l)scny”?cl'gevm
amplitudes to the quantization grid of the ADCs [1]. This caE"’msmI Symbot constefiations tor aritrary S TipeR
urther extends the analysis by considering a more realisti

be omitted when restricting to 1-bit quantization in order t ‘ del that cant Conlv the AWGN of the ch |
reduce the complexity and the power dissipation of a commpySte€M modetnat captures not only the ot the channe

nications receiver. The major drawback is, however, that tPEIl:t als_l(_)h theb_ISIt_ caus?(:h by practlcalttransm(ljt and re;?"’e
achievable data rate of a complex-valued signal transomssi ners. The objectives of the paper are 1o provide a numerica

then limited to 2 bits per channel use (bpcu), when the recleivfr""mewOrk _and to show that the ac_:hlevable data rate may not
laly benefit from the channel noise but also from the ISI.

signals are sampled at symbol rate. This can be improv _ . -
. : S exact calculation of the channel capacity, as considered
through oversampling while maintaining the advantages P] is rather difficult. The analysis is l;')here);ore restittto

1-bit quantization. This paper analyzes the prospects of . . . .
q pap y prosp P numerical evaluation of the mutual information that can be

bit quantization and oversampling for band-limited comm X
nications channels with inter-symbol-interference (18ihich achieved (a.t least) When.equa}lly propaple :I.'GTQAM s_ymbols
are transmitted. Even with this restriction it is possibde t

extends the authors’ previous results published in [2] &}d [ X .
Digital communications channels with coarse output quar'lqnder _t_he main effect, name_ly t_hat ra_ndom IS| can provide

tization and oversampling have rarely been discussed,rso A add|t|onallperform.ance gain, in particular at high SNR'

This holds in particular true for an information-theoretic | "€ Paper is organized as follows: The system model is de-

characterization of these kinds of channels. Known work h glopet()j In %ecrflon_ . Sect_|(;3n “(Ij denvesla muthual inforfoat i
often considerd the overall statistics of the quantizetnp ower bound that is considered to analyze the oversampling

signals and has not accounted for the fact that a received C(ﬂ‘ﬂmh with aFid|t|ve channgl r:mse,l ISI_ and %j—b|t(?uant|z!at|o ¢
munications signal typically consists of a useful part agdal f"‘t t_e receier. A humerical eva ua_ltlon and a discussion o
distortion caused by the transmission channel. Banddit'MPlications for optimal system designs are provided in-Sec

communications channels with 1-bit output quantizatiod arion V- SectionV concludes the paper with a short summary

oversampling have been analyzed in [4] for the special ca@'@d outlines topics for further research.

without channel noise. It has been shown that 2-fold ovepsam Il. SYSTEM MODEL

ling (with respect to the channel bandwidth) can improve theC der th val baseband model of .
performance from 1 bpcu to 1.072 bpcu, when Gaussian distri- onsider the equivalent baseband model of a communica-

buted channel inputs are used. With properly designed @tan ons system that transmits complex-valued data symials

inputs, 2-fold oversampling can provide up to 2 bpcu. This ha 11kl +J-sq[k] over an AWGN channel with two digital-

been derived in [5]. These results can be easily extendedt?()"jmaIOg converters (DACs) at the transmitter and twot1-bi

complex-valued channels, which leads to twice the perform DCs a_‘t the receive_r (for_the_in-phase and q‘%a‘?'rat“reiphase
respectively), as depicted in Fig. 1. The transmission o&kis
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work of the Young Investigators Group "3D Chip-Stack Intanects”. g1« (t) andgg, (t). The sampling rate of the transmitter DACs
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Fig. 1: Equivalent baseband model of a communications sy#ttat transmits Fig. 2: Discrete time model of a communications system trzadsimits com-
complex-valued data symbols over a band-limited AWGN ckeéawiith plex-valued data symbols over a band-limited AWGN chanrigi 4~
1-bit analog-to-digital conversion at the receiver. bit quantization and oversampling at the receidgr) andy (-) deno-

te(-)-fold up- and downsampling, respectively.

is the same as the symbol rafg,,,,,, while the sampling rate

of the 1-bit ADCs at the receiver is an integer multipl ( led noise. This assumes that the receiver bandwidth idlgtric

of fims- The DAC resolution is assumed to be sufficien_tly'mited 10 £&&,, f  mp- Then, the AWGN samples follow from

large to correctly represent the amplitudes of the trartethit w(t) as

data symbols. The DAC output waveforms are rectangular

no_
which is modeled by the DAC impulse responge,(t) = U;En] - )
VI gymp - TECH(E - fopry, — 0.5), where rect() denotes the rsin(7-t"£-€,-f i) w((n/_l)/(g'gw'fsymb)+Ts_t/)dt/
rectangular function [7]. The factoyf, ,,, scales the pulse — \/mb )

shape to unit energygp,(t) is included in the overall —c

transmitter impulse resp(_)nsy_Tx(t). Similarly, th(_e impulse \yith zero mean and varianc€,. gy, [n’] has lengthVy,, and
respor_lngX(t) of thg receiver mpluo!es the sampling-and-holgerives from the analog impulse respopge(t) for 1 < n <
behavior of the 1-bit ADCs, which is modeled ag,(t) = . as

VE Toymp - Tect(t - € - f.p — 0.5). The radio channel itself

is assumed to be frequency flat, whérelenotes the overall g, [n'] = gr ((n'=1)/(§-Ey fogmn)) V 1/ (§-Ew - Feymp)- (B)
channel attenuation, antlis the channel phase.= 0, if the . . L
transmitter and receivg:7j are perfectly s;’nchrﬁnized insphaﬁ;\?leml]'nr;? t:ii gggscgg;?;e??nd rieicdeI\;er(:nn?eu;etriaenssr?;?ses to
Thjevpower spectral density of the AWGN) will be denoted bols with \gllariancey2 the signgl-.t(.)-ﬁoise ratio (SNR) of th)é
asN,. 50

With these assumptions, a discrete time system model dEgnsmission channel follows as

be derived, which is shown in Fig. 2. It is considered at the y=6%-02/ N, (6)
ADC sampling rate, i.&- f,,,1,- Thus, the quantized received . _
samples write which is the ratio of the average energy of a received symbol
and the noise power spectral density. Note that any non-unit
¢ tj-aq for z[n] <0 xq[n] <0 gain of the transmitter and receiver impulse responses ean b
_Jai+i-g for xn] <0; xgn] >0 considered as part df.
yln] = G +3j-q for xn]>0; IQ[n] <0 @ When interested only in the received signal part that bedong

to a particular symbol that has been transmitted at timeumst
k, the ISI caused by previously and later transmitted symbols

whereg; andg, denote the two 1-bit quantization levels of the.an be separated from the useful signal parts to rewriteg2) a
in-phase and quadrature-phase, respectively, and theannqyollows:

tized received samples are given as

gy +Jj-qy otherwise,

2ln] = wifn] + j - 2gln] = @ gl v
Noy N e (1)) s+ g ] w2
ZgCh[n//].S[L(n_n//_i_l)/gj] +Z ng[n/]-w[%”-n—n'—i—l] k/z:lgch[n 5 (k 1)] S[k ] +HIZ:19RX[77/] ’U}[ é. n n+1]a
=1 =1 K #k

with |-| denoting the smallest integer close to the value in ST noise

brackets.g.,,[n] is the discrete time impulse response of the

overall transmission channel. It has a finite length, and is Which takes into account thaj,,[n] = 0 for n < 1 and
for 1 <n < N given as n> N, . The ISI and the correlated noise can be regarded as
—= v ="~%

random distortion which can be jointly exploited to improve
» a , , (3/) the achievable data rate when the received samglesare
gen[n] = 0-¢’ '/QRX(L‘ ) grx((n=1)/ (& foymb) + =) dt’ coarsely quantized. This is considered and discussed in the
—o0 next sections. The simplified case of an AWGN channel with
wherer, denotes the sampling time offset between the tran®ctangular pulse shapes, as considered in [2] and [3], is
mitter and the receiver. The discrete time AWGN samplesvered by (7), wheny, [n] =0 - e7?/\/€ for 1 <n < N,
w[n'] and the discrete time receiver impulse respapggn’] with N, = ¢ and gg, [n] = 1/VE,, for 1 <n < Ny, with
that shapes the AWGN are considered;gttimes the ADC Ny, =¢,, - & Then, both the ISI and the correlation of the
sampling rate to correctly account for the aliasing of thega noise samples vanish.



0 05 receive vectors of lengtlk’ and NV, respectively, which span
8 of ] 04l 1 over multiple symbols. The mutual information per transmit
e fsaB g5t Y9 Y = symbol is then (strictly) given as the mutual information
S 9ol f syt \i = o3l 1] between the transmit and receive vectors by lettiKigand
A % N tend to infinity [10]. Thus, by stacking the transmitted
% -30 1 & o02( {1 symbols and the received samples in vectors of lenfgth
z s and N = ¢ - K+ N, —1, and assuming a discrete transmit
o -0r 1 % 01 1 symbol alphabet with cardinalitf, e.g.,L-QAM, the mutual
g ol g 0 information per transmit symbol can be written as
& I(S;Y) = lim 1. 1(S;Y), (8)
-60 i -0.1 S where e K
10" 10° 10" 0 05 1 15 2 25 4N K
Frequency f/ fopmb Symbol period ¢ - f, 1, 1(S;Y) = Z Z Pr(y:ya | S:SH) -Pr(S:Sk) 9)
Fig. 3: Frequency and impulse responses of 5-th order Béssadass filters a=1kr=1
for different 3-dB cut-off frequencies (normalized to thardol rate). Pr(y —y. |s _ s,{)
The analysis in this paper considers, however, practical log, L
transmit and receive filter characteristics that cause T8& Z Pr(y=y,|s=s.) Pr(s=s,)

filter characteristics are derived from the impulse resperng K=l

5-th order Bessel low-pass filters [8], which are typicadj. . with Pr(s=s, ) denoting the probabilities of the transmit sym-
for wideband communications transceivers [9]. The filtexdsa bol vectors. The transition probabilitiddr(y =y, |s =s,)
width at the transmitter equals the symbol ratg,/ f,.., = can be derived asV-dimensional complex integrals over
0.5), while the filter bandwidth at the receiver will be variedin N-variate complex Gaussian probability density function
with the ADC sampling rate by adjusting the 3dB cut-offPDF) each, where the integral limits correspond to thet1-bi
frequencyf, .5 accordingly. The latter is to study the impactuantization thresholds.

of different receiver bandwidths and sampling rates. Fig. 3 For transmit and receive vectors of infinite length it is eath
shows the frequency and impulse responses of the considéregossible to compute the mutual information numericalty.
filters. The Bessel filter impulse responses are convolvéld whtill allow for a numerical performance analysis (but also t
the rectangular impulse responses of the transmitter DA@s sadjust the data rate in a practical system), a reasonahitsol
the receiver ADCs, as stated before, which yigjgs(t) and is to consider a lower bound of the mutual information which
Jr«(t). The particular type of the band-limiting filters is oftreats the ISI between different received symbols as random
less importance for the effects discussed in this papegrag | distortion and can be computed numerically. This is considie
as the band-limitation leads to ISI. Also, note that matched the following.

receive filtering, which would maximize the SNR of theA. Calculation of the lower bound

received symbols at the quantizer input is not consideree,he The considered lower bound is based on the assumption
since the results discussed in [2] and [3] have already &€l {4t the receiver detects each transmitted symbol indaligu
that a high SNR is not necessarily optimal to maximize thgithout accounting for a dependency between the received
achievable _data rate with 1-bit quantization and oversargpl samples of different symbols. To model this, a sequends of

at the receiver. sub-vectorsy, is extracted out of the overall receive vectpr

~ The impulse responseg,[n] and g,[n] for the discrete \yhere eachy. contains thet received samples of one symbol
time representation of the system model are computed fr?.i@riod. That Is

the Bessel filters and the rectangular impulse responséwof t

transmitter DACs and receiver ADCs by approximating each [Qk]n =yl&- (k=1) + 1+ ngeiay]; (10)

of the continuous-time impulse responsgs.(t) and gg, (t) wherel<n<§¢, andn,,,. is a sample delay that defines the
with a quasi-analog sampling rate that is 64 times the symhwhrt of the detection interval within the received wavafor
rate. The length of,[n] and gg,[n] has been terminated toof each symbol. A reasonable way to define an optimal
4 symbol periods, i.e.Nc, =4 -¢§ and Nrx =4 - ¢, - £&. The sample delay,,,, is to maximize the overall sample energy

noise oversampling ratio is in all considered ca§gs-2. integrated over the symbol detection period, i.e.,
£—1
I11. MUTUAL INFORMATION LOWER BOUND 2
_ . | Mgelay = Arg Max Z |gCh[n + n/]| —1 (12)

The system performance is evaluated in terms of the achiev- "o
able data rate that follows from the mutual information o th ) 2
transmission channel. To compute the mutual information it g1 | F)/ (€ Sagm)
is necessary to reformulate the system mode! such that the = arg max Z / /¢ oy - Gen () dt| =1,
channel with memory is translated into an equivalent memo- "o

ryless channel. This is possible by considering transmit an (" =1)/ (€ foyumn)



wheren € {1,2, ..., N, — &+ 1}, andg,,(t) denotes the the multi-variate complex Gaussian PDFs that result foheac
pulse shape before the integration and sampling of the AD@sssible transmit symbol sequensewhere [s], =s,. This
at the receiver. This is illustrated f@&t =1 and ¢ = 0 in conditional PDF can be derived as follows:
Fig. 4. Note that the definition af ), in (11) leads always Letz denote the column vector of lengfhwhich contains
to the same integrated sample energy over a symbol peritite received samples of one symbol period before the quan-
regardless of the particular OSR at the receiver to allowafortization. Using a matrix notation for the considered system
reasonable comparison of different sampling rates. model,z can be written as

To calculate the mutual information lower bound, lgt =Gy U -5+ Gg, -
denote a generalized vector of lengtithat can assume alf
possible received sample combmatl(ynsof Y, Furthermore,
consider a DMC which has the scalar inpytand the output
vectorsy. For equally probable i.i.d. transmit symbols, i
can then be shown that the mutual informatitii$; Y) of
this DMC is a lower bound to the mutual information pe
transmitted symbol of the true channel. That is,

w, (14)

wheres is a vector of length N, + £ —1)/¢ which contains

the transmitted symbols that affect the received samplas in

The length assumes that, —1 is an integer multiple of. If

th|s is not the case, the considered channel impulse respons

pan be zero-padded for the appropriate length. The intended

symbols; is the (n4y,, /§]+1)-th element of the vector. The

vector can havé (Ne.—1)/¢ different realizations, for a given

= > _ symbols,. The matrix$l in (14) is an upsampling matrix of
I(S Y) 2181 = ZZ Pricly= Yols=s) (12) size (N, + & —1)x((N,+ & —1)/¢), which accounts also for

a=1[=1
BT ( | ) the sample delay at the receiver and has elements
(Y=Y [s=5
| 7 o _J 1 for m=&n" = (=1 (nge,,—1) mod§)
1089 Zl = o ]n,n = . 15
I Pry(y=y_|s=sy) 0 otherwise. (15)
=1 The matrixG, is a convolution matrix of the channel impulse

which can be derived from the chain rule of mutual informaesponse. It has size<(N,, + ¢ —1) and elements

tion [10]. The marginal transition probabilities in (12)llfaw . {gch[" “n41] for 1<n'—n+1<N,
hin,n’ —

0 otherwise. (16)

Similarly, Gy, denotes the convolution matrix of the receiver
impulse response, which has sigg, - £)x(Ng,+ & - &, —1)

for K — oo as . (13)

1
hm PrK(y Y, [s=s;) = hm — ZPr —¥a|[s]k:sl)
=1
X1 [Xa]g

and elements
/ /pw\ (xls;) dlz], ... d[z], gpelt’—n+1] for 1<n'—n+1<Ng,

G ;=
Rali [Xale (Grodn. n 0 otherwise. a7)

where the integrals are defined in the complex domain, and #er preciseness, it should be noted that the Toeplitz streict
vectorsx,, andx, contain the 1-bit quantization threshold§11] of the convolution matrices5,, and Gy, does not

that correspond to the quantization levels in the outputorec exactly hold for the very first samples of a transmitted syimbo
y,- The conditional PDFp,, (z|s;) is a weighted sum of sequence. This is ignored here, since the sequence of trans-

Q 1'2 T T T T T T T T . T T T T T T T ] 5 T T T T

= 1F g T Symbol period ——m————» . —o0— =38

° 0.8L__ ampling ] B

o o T T T == - interval B T T ] ——¢=4

—g 82 : IST of previous™ ~ \)_(/ e TST of next : 4 o— (=2 ,—/‘_

2 02k pulse I e ulse E —+—¢{=1]| no

= [ N 4 qantiz.

[aH OF=—g—r—i—7—r . . . . PR S Sy it S S A S 3r 1
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Time index (t 5 'fsymb - ndelay)

Fig. 4. Delay-optimized sampling intervals for the recediaulse shapes with 5-th order Bessel low-pass filters at 1
transmitter and receiver. The depicted example considessd filters withf, 45/ f, = 0.5 at the trans-
mitter, f, dB/fsymb = 4 at the receiver and 8-fold oversampling.
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Fig. 7: Mutual information lower bounds for 16-QAM symbohiismission over band-limited AWGN channels with 1-bit eitguantization and:-fold
oversampling. The band-limitation and ISI result from Settdler Bessel filters at the transmitter WifgdB/fsymb =0.5 and the same filter type at

the receiver, considering different ratigs , / fsymb.

mitted symbols is typically much longer than the filter ldmgt IV. NUMERICAL EVALUATION AND IMPLICATIONS

such that the effect of the approximation is negligible. The _ . .
noise vectomw is a column vector of lengthy, +¢,-€—1. The ~_ Similar as in [2], 16-QAM transmit symbols are considered.
elements Ofl_U are Comp|ex_va|ued AWGN Samp|es with ZerJhat IS, the Cardlnallty of the modulation scheme is Iargant

mean and Variancﬁfo_ Fina”y' % denotes a downsamp”ngthe quantization resolution at the receiver, but the OVBFBa
matrix of size¢x(¢,, - €) with elements ling is expected to increase the effective quantizatiooltes

, tion by exploiting the signal distortions. The channel ghiss
®], ., = 1 for n=¢,/¢-(n'=1)+1 (18) assumed to be perfectly equalized such that0.
' 0 otherwise. The mutual information that results for AWGN channels

With this matrix notationp,, (z|s;) can be stated in closed-without band-limitation and ISl, as considered in [2], iDsfm
form as given in (19), wherdet(-) denotes the determinantin Fig. 6. In this casel(5; Y) is not only a lower bound but
of a matrix [11]. Using (19), the marginal transition proirue the mutual information of the channel. It can be seen tha
babilities in (13) can be computed explicitly by solving thé@versampling can improve the mutual information per trans-
multi-dimensional integrals. An alternative solutiondsobtain Mitted symbol to more than 2bpcu by exploiting the channel
the marginal transition probabilities from Monte-Carlmsia- Noise. The reason is that multiple samples of the same exteiv
tions. That is, the transition probabilities are calcudags the Symbol may be mapped to different quantization levels due to
relative frequencies of the simulated received vecyorgiven  the noise, as illustrated in Fig. 5. This effect depends en th
the transmit symbols,. These transition probabilities becomélistance of a received symbol to the quantization threshold
more and more exact the more transmit symbols are simulatégpich in turn allows to resolve 16-QAM symbols from 1-

This solution has been used for the numerical analysis of thi quantized samples. With oversampligs; Y) attains its
mutual information lower bound in Section IV. maximum at an optimal SNR below infinity. This can be

referred to as stochastic resonance. Since the oversamplin

B. Possible extensions gain relies on the channel noid¢S; Y) drops back to 2 bpcu
The considered lower bound can be easily extended abhigh SNR.

observing more thag samples per transmit symbol. That is, This can be mitigated by reducing the transmit signal power
the samples in the received vectgrcan in principle also or by introducing artificial signal distortion such as ISbrF
span over multiple symbol periods. This can improve the towband-limited channels, as discussed in this paper, theatbver
bound to some extend. The improvement is, however, rathistortion is composed ISI and (correlated) channel nase,
small for the considered examples, since the main part of timelicated in (7). Fig. 7 shows the respective mutual infor-
received symbol energy is contained within one symbol geriomation lower bound, which has been computed with Monte-
Another valuable extension would be a generalization of ti@arlo simulation results ok = 10% randomly transmitted
mutual information lower bound to non-integer oversanmlin 16-QAM symbols. Multiple effects can be observed: Without
For an analysis of the principle behavior, as consideretis t and with little oversampling4(< 2), the mutual information
paper, it is, however, sufficient to restrict to integer OSRs lower bound degrades as compared to the case without ISI.

LN He-1)/¢

p§|s(£| sl) = Z L(Ncl)+£_l)/£ '

i=1

eXP(ﬁ : (E -Gy, - ﬂ'§i)H' (9 -Gy ng' QH)_I'(E -Gy, - ﬂ'§i))

w
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Even at high SNR, the achievable rate stays below 2bpde a trade-off between the symbol energy that is kept in the
This is mainly due to the distortion of the ISI, but also dudetection interval and the part that is spread out to distibietr
to the time dispersion that spreads part of the symbol enegymbols optimally. As the ISI does not only depend on the
out of the detection interval. This effect is more pronouhcdilter characteristics but also on the transmit symbol alpha
the smaller the receive filter bandwidth is. However, largdret, a joint optimization is eventually required to maximiz
oversampling ratios can improve the performance. At mediutime system performance. The detection delgy,,, can be
SNR, the performance with oversampling can again exceegnsidered as another degree of freedom for the optimizatio
2bpcu. The larger the receiver bandwidth is, the higher is
the mutual information that can be achieved with stochastic
resonance at an optimal SNR. This is due to the fact thatThis paper has considered band-limited communications
the correlation of the noise samples decreases with a lar§gtems with 1-bit quantization and oversampling at the re-
receiver bandwidth, which then improves the performantke wiceiver. A numerical analysis based on a (proven) lower bound
oversampling. of the mutual information has been carried out to show that
The most important observation is, however, that the mutUfe system performance can benefit not only from the channel
information with oversampling can stay above 2 bpcu even B@ise but also from ISI. That is, ISI can also improve the
high SNR due to the ISI. This effect results from the randonfutual information per transmitted symbol with oversamgli
ness of the ISI, which improves the mutual information simt0 more that 2bpcu, in particular at high SNR.
larly as the channel noise. Beside the different statistios This motivates the design of optimal transmit and receive
major difference is that the distortion due to the ISI does nélters to maximize the achievable data rate of communica-
vanish at high SNR. Note, however, that the mutual inform#ons systems with 1-bit quantization and oversamplindhat t
tion Stays above prcu 0n|y if the ISI is Sufﬁcienﬂy |argéeceiver. The optimization is in the focus of further reskar
to affect the quantization. That is, if the maximum ampleudAn example application is the design of low-complexity san
of the ISI would be less than the amplitude of the receiveiivers for energy-efficient wireless wide-band commutioca
samples without IS, none of the quantized received samplé¥s that are needed in next generation high-performance
would be affected by the ISI at high SNR, and the mutual ifomputers [12]. It is expected that the maximum mutual
formation would return to 2 bpcu. This is not the case with tH&formation that has been calculated in [3] for AWGN chasnel
considered Bessel filters, but it could occur with differiter ~ Without ISI can be exceeded with the design of dedicated
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