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Abstract—1-bit analog-to-digital conversion is very attractive
for low-complexity communications receivers. A major drawback
is, however, the small spectral efficiency when sampling at symbol
rate. This can be improved through oversampling by exploiting
the signal distortion caused by the transmission channel. This
paper analyzes the achievable data rate of band-limited commu-
nications channels that are subject to additive noise and inter-
symbol-interference with 1-bit quantization and oversampling at
the receiver. It is shown that not only the channel noise but also
the inter-symbol-interference can be exploited to benefit from
oversampling.

I. I NTRODUCTION

Multi-bit analog-to-digital converters (ADCs) at the receiver
require an analog gain control to adjust the received signal
amplitudes to the quantization grid of the ADCs [1]. This can
be omitted when restricting to 1-bit quantization in order to
reduce the complexity and the power dissipation of a commu-
nications receiver. The major drawback is, however, that the
achievable data rate of a complex-valued signal transmission is
then limited to 2 bits per channel use (bpcu), when the received
signals are sampled at symbol rate. This can be improved
through oversampling while maintaining the advantages of
1-bit quantization. This paper analyzes the prospects of 1-
bit quantization and oversampling for band-limited commu-
nications channels with inter-symbol-interference (ISI), which
extends the authors’ previous results published in [2] and [3].

Digital communications channels with coarse output quan-
tization and oversampling have rarely been discussed, so far.
This holds in particular true for an information-theoretic
characterization of these kinds of channels. Known work has
often considerd the overall statistics of the quantizer input
signals and has not accounted for the fact that a received com-
munications signal typically consists of a useful part and signal
distortion caused by the transmission channel. Band-limited
communications channels with 1-bit output quantization and
oversampling have been analyzed in [4] for the special case
without channel noise. It has been shown that 2-fold oversamp-
ling (with respect to the channel bandwidth) can improve the
performance from 1 bpcu to 1.072 bpcu, when Gaussian distri-
buted channel inputs are used. With properly designed channel
inputs, 2-fold oversampling can provide up to 2 bpcu. This has
been derived in [5]. These results can be easily extended to
complex-valued channels, which leads to twice the performan-
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ce. The authors of [6] have derived the capacity of AWGN
channels (not band-limited) with 1-bit output quantization and
arbitrary integer oversampling for low signal-to-noise ratios
(SNR). The achievable data rate of complex-valued AWGN
channels with 1-bit quantization and oversampling has been
analyzed for arbitrary SNRs in [2]. By considering conven-
tional modulation schemes such as 16-QAM, it has been
shown that the channel noise can be utilized as dither sig-
nal that increases the effective, quantization resolutionand
allows to detect higher-order modulation schemes even with
1-bit quantization. The analysis has been pursued in [3], by
calculating the channel capacity and the capacity achieving
transmit symbol constellations for arbitrary SNRs. This paper
further extends the analysis by considering a more realistic
system model that captures not only the AWGN of the channel
but also the ISI caused by practical transmit and receive
filters. The objectives of the paper are to provide a numerical
framework and to show that the achievable data rate may not
only benefit from the channel noise but also from the ISI.
An exact calculation of the channel capacity, as consideredin
[3], is rather difficult. The analysis is therefore restricted to
a numerical evaluation of the mutual information that can be
achieved (at least) when equally probable 16-QAM symbols
are transmitted. Even with this restriction it is possible to
render the main effect, namely that random ISI can provide
an additional performance gain, in particular at high SNR.

The paper is organized as follows: The system model is de-
veloped in Section II. Section III derives a mutual information
lower bound that is considered to analyze the oversampling
gain with additive channel noise, ISI and 1-bit quantization
at the receiver. A numerical evaluation and a discussion of
implications for optimal system designs are provided in Sec-
tion IV. Section V concludes the paper with a short summary
and outlines topics for further research.

II. SYSTEM MODEL

Consider the equivalent baseband model of a communica-
tions system that transmits complex-valued data symbolss[k]
= sI[k] + j ·sQ[k] over an AWGN channel with two digital-
to-analog converters (DACs) at the transmitter and two 1-bit
ADCs at the receiver (for the in-phase and quadrature-phase,
respectively), as depicted in Fig. 1. The transmission channel is
band-limited due to the filter characteristics of the transmitter
and receiver, which are modeled by the impulse responses
gTx(t) andgRx(t). The sampling rate of the transmitter DACs
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Fig. 1: Equivalent baseband model of a communications system that transmits
complex-valued data symbols over a band-limited AWGN channel with
1-bit analog-to-digital conversion at the receiver.

is the same as the symbol ratefsymb, while the sampling rate
of the 1-bit ADCs at the receiver is an integer multiple (ξ)
of fsymb. The DAC resolution is assumed to be sufficiently
large to correctly represent the amplitudes of the transmitted
data symbols. The DAC output waveforms are rectangular,
which is modeled by the DAC impulse responsegDAC(t) =√
fsymb · rect(t · fsymb − 0.5), where rect(·) denotes the

rectangular function [7]. The factor
√
fsymb scales the pulse

shape to unit energy.gDAC(t) is included in the overall
transmitter impulse responsegTx(t). Similarly, the impulse
responsegRx(t) of the receiver includes the sampling-and-hold
behavior of the 1-bit ADCs, which is modeled asgADC(t) =√
ξ ·fsymb · rect(t · ξ ·fsymb − 0.5). The radio channel itself

is assumed to be frequency flat, whereθ denotes the overall
channel attenuation, andφ is the channel phase.φ = 0, if the
transmitter and receiver are perfectly synchronized in phase.
The power spectral density of the AWGNw(t) will be denoted
asN0.

With these assumptions, a discrete time system model can
be derived, which is shown in Fig. 2. It is considered at the
ADC sampling rate, i.e,ξ ·fsymb. Thus, the quantized received
samples write

y[n] =







q1 + j · q1 for xI[n] ≤ 0; xQ[n] ≤ 0

q1 + j · q2 for xI[n] ≤ 0; xQ[n] > 0

q2 + j · q1 for xI[n] > 0; xQ[n] ≤ 0

q2 + j · q2 otherwise,

(1)

whereq1 andq2 denote the two 1-bit quantization levels of the
in-phase and quadrature-phase, respectively, and the unquan-
tized received samples are given as

x[n] = xI[n] + j · xQ[n] = (2)
Nch∑

n′′=1

gch[n
′′]·s

[
⌊(n−n′′+1)/ξ⌋

]
+

NRx∑

n′=1

gRx[n
′]·w[ξw

ξ
·n−n′+1]

with ⌊·⌋ denoting the smallest integer close to the value in
brackets.gch[n] is the discrete time impulse response of the
overall transmission channel. It has a finite lengthNch and is
for 1 ≤ n ≤ Nch given as

(3)
gch[n] = θ ·ej·φ·

∞∫

−∞

gRx(t
′)·gTx((n−1)/(ξ ·fsymb) + τs− t′) dt′,

whereτs denotes the sampling time offset between the trans-
mitter and the receiver. The discrete time AWGN samples
w[n′] and the discrete time receiver impulse responsegRx[n

′]
that shapes the AWGN are considered atξw times the ADC
sampling rate to correctly account for the aliasing of the samp-
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Fig. 2: Discrete time model of a communications system that transmits com-
plex-valued data symbols over a band-limited AWGN channel with 1-
bit quantization and oversampling at the receiver.

led noise. This assumes that the receiver bandwidth is strictly
limited to±ξ·ξw·fsymb. Then, the AWGN samples follow from
w(t) as

w[n′] = (4)
∞∫

−∞

sin
(
π ·t′·ξ ·ξw ·fsymb

)

π · t′ ·
w((n′−1)/(ξ ·ξw ·fsymb)+τs−t′)

√
ξ·ξw ·fsymb

dt′,

with zero mean and varianceN0. gRx[n
′] has lengthNRx and

derives from the analog impulse responsegRx(t) for 1 ≤ n ≤
NRx as

gRx[n
′] = gRx((n

′−1)/(ξ ·ξw ·fsymb))·
√

1/(ξ ·ξw ·fsymb). (5)

Assuming the transmitter and receiver impulse responses to
have unit gain and considering i.i.d. zero-mean transmit sym-
bols with varianceσ2

s , the signal-to-noise ratio (SNR) of the
transmission channel follows as

γ = θ2 · σ2
s /N0, (6)

which is the ratio of the average energy of a received symbol
and the noise power spectral density. Note that any non-unit
gain of the transmitter and receiver impulse responses can be
considered as part ofθ.

When interested only in the received signal part that belongs
to a particular symbol that has been transmitted at time instant
k, the ISI caused by previously and later transmitted symbols
can be separated from the useful signal parts to rewrite (2) as
follows:

x[n] = gch[n] · s[k] + · · · (7)

· · ·
K∑

k′=1
k′ 6=k

gch[n−ξ ·(k′−1)]·s[k′]

︸ ︷︷ ︸

ISI

+

NRx∑

n′=1

gRx[n
′]·w[ξw

ξ
·n−n′+1]

︸ ︷︷ ︸

noise

,

which takes into account thatgch[n] = 0 for n < 1 and
n>Nch. The ISI and the correlated noise can be regarded as
random distortion which can be jointly exploited to improve
the achievable data rate when the received samplesx[n] are
coarsely quantized. This is considered and discussed in the
next sections. The simplified case of an AWGN channel with
rectangular pulse shapes, as considered in [2] and [3], is
covered by (7), whengch[n] = θ · ej·φ/√ξ for 1 ≤ n ≤ Nch

with Nch = ξ and gRx[n] = 1/
√
ξw for 1 ≤ n ≤ NRx with

NRx = ξw · ξ. Then, both the ISI and the correlation of the
noise samples vanish.
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Fig. 3: Frequency and impulse responses of 5-th order Bessellow-pass filters
for different 3-dB cut-off frequencies (normalized to the symbol rate).

The analysis in this paper considers, however, practical
transmit and receive filter characteristics that cause ISI.The
filter characteristics are derived from the impulse responses of
5-th order Bessel low-pass filters [8], which are typical, e.g.,
for wideband communications transceivers [9]. The filter band-
width at the transmitter equals the symbol rate (f3 dB/fsymb=
0.5), while the filter bandwidth at the receiver will be varied
with the ADC sampling rate by adjusting the 3 dB cut-off
frequencyf3 dB accordingly. The latter is to study the impact
of different receiver bandwidths and sampling rates. Fig. 3
shows the frequency and impulse responses of the considered
filters. The Bessel filter impulse responses are convolved with
the rectangular impulse responses of the transmitter DACs and
the receiver ADCs, as stated before, which yieldsgTx(t) and
gRx(t). The particular type of the band-limiting filters is of
less importance for the effects discussed in this paper, as long
as the band-limitation leads to ISI. Also, note that matched
receive filtering, which would maximize the SNR of the
received symbols at the quantizer input is not considered here,
since the results discussed in [2] and [3] have already indicated
that a high SNR is not necessarily optimal to maximize the
achievable data rate with 1-bit quantization and oversampling
at the receiver.

The impulse responsesgch[n] and gRx[n] for the discrete
time representation of the system model are computed from
the Bessel filters and the rectangular impulse responses of the
transmitter DACs and receiver ADCs by approximating each
of the continuous-time impulse responsesgTx(t) and gRx(t)
with a quasi-analog sampling rate that is 64 times the symbol
rate. The length ofgch[n] andgRx[n] has been terminated to
4 symbol periods, i.e.,Nch =4 · ξ andNRx =4 · ξw · ξ. The
noise oversampling ratio is in all considered casesξw=2.

III. M UTUAL INFORMATION LOWER BOUND

The system performance is evaluated in terms of the achiev-
able data rate that follows from the mutual information of the
transmission channel. To compute the mutual information it
is necessary to reformulate the system model such that the
channel with memory is translated into an equivalent memo-
ryless channel. This is possible by considering transmit and

receive vectors of lengthK andN , respectively, which span
over multiple symbols. The mutual information per transmit
symbol is then (strictly) given as the mutual information
between the transmit and receive vectors by lettingK and
N tend to infinity [10]. Thus, by stacking the transmitted
symbols and the received samples in vectors of lengthK
and N = ξ · K+Nch−1, and assuming a discrete transmit
symbol alphabet with cardinalityL, e.g.,L-QAM, the mutual
information per transmit symbol can be written as

I(S;Y ) = lim
K→∞

1

K
· I(S;Y ), (8)

where

I(S;Y ) =

4N
∑

α=1

LK

∑

κ=1

Pr(y=yα |s=sκ)·Pr(s=sk) (9)

·log2







Pr(y=yα |s=sκ)
LK

∑

κ′=1

Pr(y=yα |s=sκ′)·Pr(s=sκ′)







with Pr(s=sκ) denoting the probabilities of the transmit sym-
bol vectors. The transition probabilitiesPr(y = yα |s = sκ)
can be derived asN -dimensional complex integrals over
an N -variate complex Gaussian probability density function
(PDF) each, where the integral limits correspond to the 1-bit
quantization thresholds.

For transmit and receive vectors of infinite length it is rather
impossible to compute the mutual information numerically.To
still allow for a numerical performance analysis (but also to
adjust the data rate in a practical system), a reasonable solution
is to consider a lower bound of the mutual information which
treats the ISI between different received symbols as random
distortion and can be computed numerically. This is considered
in the following.
A. Calculation of the lower bound

The considered lower bound is based on the assumption
that the receiver detects each transmitted symbol individually
without accounting for a dependency between the received
samples of different symbols. To model this, a sequence ofK
sub-vectorsy

k
is extracted out of the overall receive vectory,

where eachy
k

contains theξ received samples of one symbol
period. That is,

[y
k
]n = y[ξ · (k−1) + n+ ndelay], (10)

where1≤n≤ξ, andndelay is a sample delay that defines the
start of the detection interval within the received waveform
of each symbol. A reasonable way to define an optimal
sample delayndelay is to maximize the overall sample energy
integrated over the symbol detection period, i.e.,

ndelay = arg max
n

ξ−1
∑

n′=0

∣
∣gch[n+ n′]

∣
∣
2− 1 (11)

= arg max
n

ξ−1
∑

n′=0

∣
∣
∣
∣
∣
∣
∣
∣

∫
(n+n′)/(ξ·fsymb)

(n+n′−1)/(ξ·fsymb)

√

ξ ·fsymb · ğch(t) dt

∣
∣
∣
∣
∣
∣
∣
∣

2

− 1,
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wheren ∈ {1, 2, . . . , Nch − ξ + 1}, and ğch(t) denotes the
pulse shape before the integration and sampling of the ADCs
at the receiver. This is illustrated forθ = 1 and φ = 0 in
Fig. 4. Note that the definition ofndelay in (11) leads always
to the same integrated sample energy over a symbol period,
regardless of the particular OSR at the receiver to allow fora
reasonable comparison of different sampling rates.

To calculate the mutual information lower bound, lety

denote a generalized vector of lengthξ that can assume all4ξ

possible received sample combinationsy
α

of y
k
. Furthermore,

consider a DMC which has the scalar inputss and the output
vectors y. For equally probable i.i.d. transmit symbols, it
can then be shown that the mutual informationI(S; Y) of
this DMC is a lower bound to the mutual information per
transmitted symbol of the true channel. That is,

1

K
·I(S;Y ) ≥ I(S; Y) =

4ξ
∑

α=1

L∑

l=1

1

L
·PrK(y=y

α
|s=sl) (12)

· log2







PrK(y=y
α
|s=sl)

L∑

l′=1

1

L
·PrK(y=y

α
|s=sl′)






.

which can be derived from the chain rule of mutual informa-
tion [10]. The marginal transition probabilities in (12) follow
for K → ∞ as (13)

lim
K→∞

PrK(y=y
α
|s=sl) = lim

K→∞

1

K
·
K∑

k=1

Pr(y
k
=y

α
|[s]k=sl)

=

∫
[χ̌α]1

[χ̂α]1

· · ·
∫
[χ̌α]ξ

[χ̂α]ξ

p
x|s(x|sl) d[x]1 . . . d[x]ξ

where the integrals are defined in the complex domain, and the
vectorsχ̂α and χ̌α contain the 1-bit quantization thresholds
that correspond to the quantization levels in the output vector
y
α

. The conditional PDFp
x|s(x | sl) is a weighted sum of

the multi-variate complex Gaussian PDFs that result for each
possible transmit symbol sequences where [s]k = sl. This
conditional PDF can be derived as follows:

Let x denote the column vector of lengthξ, which contains
the received samples of one symbol period before the quan-
tization. Using a matrix notation for the considered system
model,x can be written as

x = Gch ·U · s+D ·GRx ·w, (14)

wheres is a vector of length(Nch+ ξ −1)/ξ which contains
the transmitted symbols that affect the received samples inx.
The length assumes thatNch−1 is an integer multiple ofξ. If
this is not the case, the considered channel impulse response
can be zero-padded for the appropriate length. The intended
symbolsl is the (⌈ndelay/ξ⌉+1)-th element of the vector. The
vector can haveL(Nch−1)/ξ different realizationssi for a given
symbol sl. The matrixU in (14) is an upsampling matrix of
size(Nch+ ξ −1) x((Nch+ ξ −1)/ξ), which accounts also for
the sample delay at the receiver and has elements

[U]n, n′ =

{

1 for n = ξ · n′− (ξ−1− (ndelay−1)mod ξ)

0 otherwise. (15)

The matrixGch is a convolution matrix of the channel impulse
response. It has sizeξ x(Nch+ ξ −1) and elements

[Gch]n, n′ =

{

gch[n
′− n+ 1] for 1 ≤ n′ − n+ 1 ≤ Nch

0 otherwise. (16)

Similarly, GRx denotes the convolution matrix of the receiver
impulse response, which has size(ξw · ξ) x(NRx+ ξ · ξw −1)
and elements

[GRx]n, n′ =

{

gRx[n
′− n+ 1] for 1 ≤ n′− n+1 ≤ NRx

0 otherwise. (17)

For preciseness, it should be noted that the Toeplitz structure
[11] of the convolution matricesGch and GRx does not
exactly hold for the very first samples of a transmitted symbol
sequence. This is ignored here, since the sequence of trans-
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.

mitted symbols is typically much longer than the filter length,
such that the effect of the approximation is negligible. The
noise vectorw is a column vector of lengthNRx+ξw ·ξ−1. The
elements ofw are complex-valued AWGN samples with zero
mean and varianceN0. Finally, D denotes a downsampling
matrix of sizeξ x(ξw · ξ) with elements

[D]n, n′ =

{

1 for n = ξw/ξ · (n′−1) + 1

0 otherwise.
(18)

With this matrix notation,p
x|s(x|sl) can be stated in closed-

form as given in (19), wheredet(·) denotes the determinant
of a matrix [11]. Using (19), the marginal transition pro-
babilities in (13) can be computed explicitly by solving the
multi-dimensional integrals. An alternative solution is to obtain
the marginal transition probabilities from Monte-Carlo simula-
tions. That is, the transition probabilities are calculated as the
relative frequencies of the simulated received vectorsy

α
given

the transmit symbolssl. These transition probabilities become
more and more exact the more transmit symbols are simulated.
This solution has been used for the numerical analysis of the
mutual information lower bound in Section IV.

B. Possible extensions

The considered lower bound can be easily extended to
observing more thanξ samples per transmit symbol. That is,
the samples in the received vectory can in principle also
span over multiple symbol periods. This can improve the lower
bound to some extend. The improvement is, however, rather
small for the considered examples, since the main part of the
received symbol energy is contained within one symbol period.
Another valuable extension would be a generalization of the
mutual information lower bound to non-integer oversampling.
For an analysis of the principle behavior, as considered in this
paper, it is, however, sufficient to restrict to integer OSRs.

IV. N UMERICAL EVALUATION AND IMPLICATIONS

Similar as in [2], 16-QAM transmit symbols are considered.
That is, the cardinality of the modulation scheme is larger than
the quantization resolution at the receiver, but the oversamp-
ling is expected to increase the effective quantization resolu-
tion by exploiting the signal distortions. The channel phase is
assumed to be perfectly equalized such thatφ=0.

The mutual information that results for AWGN channels
without band-limitation and ISI, as considered in [2], is shown
in Fig. 6. In this case,I(S; Y) is not only a lower bound but
true the mutual information of the channel. It can be seen that
oversampling can improve the mutual information per trans-
mitted symbol to more than 2 bpcu by exploiting the channel
noise. The reason is that multiple samples of the same received
symbol may be mapped to different quantization levels due to
the noise, as illustrated in Fig. 5. This effect depends on the
distance of a received symbol to the quantization thresholds,
which in turn allows to resolve 16-QAM symbols from 1-
bit quantized samples. With oversampling,I(S; Y) attains its
maximum at an optimal SNR below infinity. This can be
referred to as stochastic resonance. Since the oversampling
gain relies on the channel noise,I(S; Y) drops back to 2 bpcu
at high SNR.

This can be mitigated by reducing the transmit signal power
or by introducing artificial signal distortion such as ISI. For
band-limited channels, as discussed in this paper, the overall
distortion is composed ISI and (correlated) channel noise,as
indicated in (7). Fig. 7 shows the respective mutual infor-
mation lower bound, which has been computed with Monte-
Carlo simulation results ofK = 108 randomly transmitted
16-QAM symbols. Multiple effects can be observed: Without
and with little oversampling (ξ ≤ 2), the mutual information
lower bound degrades as compared to the case without ISI.

p
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L(N
ch

+ξ−1)/ξ

∑

i=1

1
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·
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)
H ·

(
D ·GRx ·GH
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)
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Even at high SNR, the achievable rate stays below 2 bpcu.
This is mainly due to the distortion of the ISI, but also due
to the time dispersion that spreads part of the symbol energy
out of the detection interval. This effect is more pronounced
the smaller the receive filter bandwidth is. However, larger
oversampling ratios can improve the performance. At medium
SNR, the performance with oversampling can again exceed
2 bpcu. The larger the receiver bandwidth is, the higher is
the mutual information that can be achieved with stochastic
resonance at an optimal SNR. This is due to the fact that
the correlation of the noise samples decreases with a larger
receiver bandwidth, which then improves the performance with
oversampling.

The most important observation is, however, that the mutual
information with oversampling can stay above 2 bpcu even at
high SNR due to the ISI. This effect results from the random-
ness of the ISI, which improves the mutual information simi-
larly as the channel noise. Beside the different statistics, the
major difference is that the distortion due to the ISI does not
vanish at high SNR. Note, however, that the mutual informa-
tion stays above 2 bpcu only if the ISI is sufficiently large
to affect the quantization. That is, if the maximum amplitude
of the ISI would be less than the amplitude of the received
samples without ISI, none of the quantized received samples
would be affected by the ISI at high SNR, and the mutual in-
formation would return to 2 bpcu. This is not the case with the
considered Bessel filters, but it could occur with differentfilter
characteristics and a larger transmitter bandwidth. The rather
small improvement ofI(S; Y) when the OSR is increased
from ξ = 4 to ξ = 8 can be traced back to the fact that the
ISI within a symbol interval stems only from the previous and
the next symbol (see Figure 4). This confines the amplitude
space of the random ISI and prevents larger improvements at
high OSRs for a 16-QAM symbol alphabet and the considered
filter characteristics. If the overall channel impulse response
would have a larger ripple before and/or after the symbol
detection interval, more symbols would contribute to the ISI.
This would increase the amplitude space of the ISI and could
further improve the oversampling gain at high OSRs.

The general conclusion to be drawn from the above observa-
tions is that random ISI can be exploited similarly as AWGN
to improve the system performance with 1-bit quantization and
oversampling at the receiver. Note that the mutual information
shown in Fig. 7 is still a lower bound. It indicates a data rate
that can be achieved at least. The oversampling gain depends
on the ISI but also on the filtered AWGN, both of which
jointly affect the received samples of each symbol. It can
be conjectured, that there is an optimal trade-off between the
degradation caused by the overall distortion and its benefitin
terms of an increased effective quantization resolution. As both
effects depend on the transmit and receive filter characteristics,
an optimal trade-off will require optimal filter designs, where
the transmit filter design may be constrained in practice by
spectral mask requirements. Optimal receive filters will not
only optimize the ISI but also the bandwidth of the additive
noise. Regarding an optimization in terms of the ISI, there will

be a trade-off between the symbol energy that is kept in the
detection interval and the part that is spread out to distortother
symbols optimally. As the ISI does not only depend on the
filter characteristics but also on the transmit symbol alpha-
bet, a joint optimization is eventually required to maximize
the system performance. The detection delayndelay can be
considered as another degree of freedom for the optimization.

V. CONCLUSIONS

This paper has considered band-limited communications
systems with 1-bit quantization and oversampling at the re-
ceiver. A numerical analysis based on a (proven) lower bound
of the mutual information has been carried out to show that
the system performance can benefit not only from the channel
noise but also from ISI. That is, ISI can also improve the
mutual information per transmitted symbol with oversampling
to more that 2 bpcu, in particular at high SNR.

This motivates the design of optimal transmit and receive
filters to maximize the achievable data rate of communica-
tions systems with 1-bit quantization and oversampling at the
receiver. The optimization is in the focus of further research.
An example application is the design of low-complexity trans-
ceivers for energy-efficient wireless wide-band communication
links that are needed in next generation high-performance
computers [12]. It is expected that the maximum mutual
information that has been calculated in [3] for AWGN channels
without ISI can be exceeded with the design of dedicated
filter characteristics and optimal channel inputs. Anotheropen
research topic is to extend the results of this paper to multi-bit
quantization and to non-integer oversampling ratios.
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