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Abstract—Theoretical research on coordinated multi-point
(CoMP) in the cellular uplink claims large improvements in
spectral efficiency and fairness. However, the real-world im-
plementation of CoMP is linked with major challenges such
as multi-cell synchronization and multi-cell channel estimation,
which have to be addressed to make sure that CoMP finds its
way into next generation cellular systems (e.g. LTE-Advanced).
In this paper, we provide a proof-of-concept that uplink CoMP
concepts do in fact yield significant spectral efficiency gains in
an outdoor deployment of two cooperating base stations and
two terminals. We further show that the performance gains of
CoMP in various interference scenarios corresponds quite well
with predictions from theory.

I. INTRODUCTION

The increasing demand for higher transmission rates in

cellular mobile communication systems requires that spectrum

is used as efficiently as possible, which requires that radio

resources are reused in each cell. The occurring inter-cell

interference, however, is not sufficiently addressed in LTE

Release 8 [1], which leads to a strong performance degradation

of cell-edge users.

It is well-known that an information exchange among base

stations for the purpose of coordinated multi-point (CoMP)

detection or transmission allows exploiting inter-cell signal

propagation rather than treating it as a curse, yielding large

spectral efficiency and fairness gains [2], [3]. However, the

benefits of CoMP come at a high cost in terms of complexity

and additional infrastructure required. Some important techni-

cal challenges are the synchronization in time and frequency

of all cooperating entities [4], the estimation of the CoMP

channel [5], as well as backhaul-efficient multi-cell signal

processing [6], [7].

The focus of the EASY-C project [8] is to assess the

potential gains of CoMP vs. the efforts required to achieve

these under real-world conditions. In this paper, we present

measurement results for an uplink setup where two terminals

(UEs) are jointly detected by two cooperating base stations

(BSs). We vary the location of the UEs to create symmetric

and asymmetric scenarios, and compare the results to gain

predictions from information theory.

The paper is organized as follows. In Section II, we describe

the measurement setup. The signal processing architecture

is addressed in Section III. Information theoretic basics are

reviewed in Section IV. In Section V, we present and discuss

measurement results. The paper is concluded in Section VI.

Fig. 1: Measurement setup (by courtesy of Google maps!)

Carrier frequency 2.53 GHz
System bandwidth 10 MHz
Resource blocks (PRBs) 30

No. of sub-carriers per PRB 12

Transmit Power −5 dBm
Quantization resolution 12 bit per real dimension

TABLE I: Transmission parameters

II. MEASUREMENT SETUP

The measurement setup is depicted in Figure 1. We can see

shows the location of two BSs deployed on the rooftop of a

building in Dresden, which are connected through a microwave

link. The BSs are synchronized through GPS fed reference

normals that ensure a fine synchronization on a sample basis

and each one is equipped with a cross-polarized dual antenna

of type KATHREIN 80010541. The measurements are per-

formed in a way such that the UEs are allocated to the same

fixed time and frequency resources and transmit continuously

using a sequence of different modulation and coding schemes

(MCSs), as listed in Table I, employing one transmit antenna

each. In contrast to LTE Release 8, the UEs use orthogonal

frequency division multiplex (OFDM), since this strongly

simplifies multi-user equalization as compared to single-carrier

FDMA. In our particular prototype setup, the received signals

are quantized and recorded for later offline evaluation. An

overview of the measurement concept is depicted in Figure 2,

and various other relevant transmission parameters are listed

in Table I.
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Fig. 2: Overview of the measurement concept.

III. SIGNAL PROCESSING ARCHITECTURE

Neglecting residual synchronization errors and assuming the

channel has a coherence bandwidth significantly larger than

the sub-carrier spacing of ∆F = 15 kHz, the transmission of

each symbol on a single sub-carrier of the OFDM system in

frequency domain can be stated as

y1 = h1,1x1 + h1,2x2 + n1,

y2 = h2,1x1 + h2,2x2 + n2,
(1)

where ym ∈ C
[Nbs×1] denotes a vector of received by Nbs

antennas of BS m, hm,n ∈ C
[Nbs×1] denotes the channel gain

matrix from UE n to BS m, xn ∈ C is a symbol transmitted

by UE n, and nm ∈ C
[Nbs×1] denotes additive, uncorrelated

noise.

The complete receiver signal processing chain is depicted

in Figure 3. In the following, we will address its elements in

more detail.

A. Synchronization

As explained in Section II, the carrier frequency of the BSs

is synchronized by using GPS fed reference normals, which is

accurate enough for remaining errors to be neglected [9]. The

frequency offset of the UEs is precompensated using reference

signals that are transmitted over the downlink. Compared to

the sub-carrier spacing, the remaining offset of less than 200
Hz is small enough to disregard co-channel interference. The

remaining common phase error (CPE) is taken into account

by an appropriate interpolation of the channel estimates, as

will be explained in the next section. The frame and symbol

synchronization is based on the autocorrelation properties of

the OFDM time domain signal. For more details, we refer to

[10].

B. Channel Estimation

For channel estimation, we choose a pilot based approach.

The pilot positions are the same as those standardized for LTE

Rel. 8 [1], i.e. within each uplink transmit time interval (TTI)

consisting of 14 OFDM symbols, pilots are mapped on all

sub-carriers of the 4th and 11th OFDM symbols. Provided

that the channel coefficient of two neighboring sub-carriers

are equal, interference between pilot symbols of different

UEs is avoided by a code orthogonal design using Frank-

Zadoff-Chu sequences. Accordingly, each user is identified by

a user-specific phase rotation exp(jπnk) multiplied with the

baseline pilot sequences, where k and n are the sub-carrier

index and the user index, respectively. At the receiver side, the

multi-user channel estimation can be performed by a simple

Hadamard approach as is well known from MIMO channel

estimation theory [11]. Due to the spreading factor of two,

the channel is estimated for every second sub-carrier in the

frequency domain. In order to estimate the channel for all other

sub-carriers, time and frequency interpolation are carried out

separately. Due to synchronization and common phase errors

between UEs and BSs, resulting in a linear phase drift over

time and frequency, the channel coefficients are interpolated

with respect to amplitude and phase separately. The estimated

channel links, which inherently contain transmit power are

determined based on the assumption of unit transmit power

per UE, are denoted by ĥm,n.

C. Noise Covariance Estimation

The estimation of the noise covariance is based on the chan-

nel estimates ĥm,n. Because orthogonal pilot sequences are

used, we are able to estimate the noise covariance independent

from interference of the other UE. The particular estimation

procedure relies on the assumption that the channel of two

neighboring sub-carriers is equal and that the noise on different

sub-carriers is uncorrelated. Based on this assumption, we

can exploit the autocorrelation properties of ĥm,n to separate

its noise and signal components. Subsequently, the power of

these components is estimated. For a robust estimation, the

determined values are averaged over both pilot sequences of

each TTI and over the receive antennas. Using this approach,

one noise variance σ̂2
m can be determined per BS.

D. Channel Equalization

For symbol detection, we examine four different schemes

all based on linear unbiased MMSE equalization.

1) Both UEs are detected by a different BS. The UE - BS

assignment may be swapped.

2) Both UEs are detected by BS 1
3) Both UEs are detected by BS 2
4) Both UEs are jointly detected by one of the BSs, assum-

ing that quantized frequency-domain receive signals are

exchanged over the backhaul with 24 bits per complex

symbol per sub-carrier.

For all non-cooperative options (1 - 3), the MMSE equal-

ization filter for the detection of one particular receive symbol

of UE n at BS m is given by

G
[m,n]
biased = ĥH

m,n

(

ĥm,nĥH
m,n + ĥm,n̄ĥH

m,n̄ + σ̂2
mI

)

−1

, (2)
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Fig. 3: Receiver chain

where n̄ is the index of the interfering UE. The MMSE filter

for joint detection is

Gbiased = ĤH
(

ĤĤH + Φ̂
)

−1

, (3)

where Ĥ =

[

ĥ1,1 ĥ1,2

ĥ2,1 ĥ2,2

]

and Φ̂ =

[

σ̂2
1I 0
0 σ̂2

2I

]

.

The output of both filters is biased which results in an

increased bit error probability for higher order modulation

schemes such as 16QAM. For this reason, we resort to

the unbiased MMSE filter, which is given by the following

expression

G =
(

diag
(

diag−1 (Gbiased)
))−1

Gbiased, (4)

where diag(·) takes a vector of size N to a diagonal matrix

of size N ×N , and diag(·)−1 maps the diagonal elements of

any square matrix of size N × N to the entries of a size N

vector. Hence, if diag(·)−1 and diag(·) are used successively,

the off diagonal elements of the resulting matrix are all zero.

Since the BSs estimate the channel towards each UE (even

in the non-cooperative case) the BSs are able to reduce

interference by taking it into account in the determination of

the equalization filter. In LTE, this feature is referred to as

interference rejection combining.

E. Soft Demodulation and Decoding

The soft demodulation is based on the equalizer output

and signal-to-interference-and-noise ratios (SINRs) which are

estimated according to a standard error vector magnitude

approach [12]. The demodulator output is subsequently fed

into the decoding chain, which, together with the used codes

is basically compliant to LTE Rel. 8. The employed codes

are listed in Table II. Each codeword spans one TTI in time

domain and all 30 PRBs in frequency domain. The decoding

success is determined by an outer CRC check, also a standard

procedure.

IV. INFORMATION THEORY

Previous publications clearly show that CoMP offers high

gains in terms of capacity when compared to non-cooperative

communication [3]. However, actual gains achievable in real

systems can be determined in field trials only. Therefore,

MCS# Mod. scheme Code rate Peak rate Bit per channel use

1 4QAM 2/3 4.54 Mbps 1.34
2 16QAM 1/2 6.91 Mbps 2.00
3 16QAM 2/3 9.29 Mbps 2.66
4 16QAM 3/4 10.6 Mbps 3.00
5 16QAM 6/7 12.3 Mbps 3.43

TABLE II: Modulation schemes and code rates used for

transmission, assuming turbo codes as used in LTE Rel. 8.

comparing theoretical results with measurement results is of

great interest. The information theoretic fundamentals for this

comparison are recapitulated in this section. The fundamental

limits for achievable transmission rates are given by Shannon’s

definition of channel capacity. Since our setup is constrained

to linear detection strategies —in particular we do not consider

interference cancelation — we are not able to achieve channel

capacity. Instead, the maximum achievable rates are given

by the well known Shannon type equations for the Gaussian

multi-user MIMO channel with linear MMSE receivers. If

the BSs do not cooperate, the achievable rates depend on

the choice of the BS, detecting a particular UE. Assuming

a channel realization that is flat in the frequency domain and

static at least for one TTI, the rate of UE n which is detected

at BS m is given by

Rm,n = log2

∣

∣

∣
1 + hH

m,n

(

hm,n̄hH
m,n̄ + σ2

mI
)−1

hm,n

∣

∣

∣
, (5)

In (5), the transmit power is normalized to one, which is

always possible by adjusting the channel gains accordingly.

On the other hand, if both UEs are decoded jointly, the

achievable rates are given by

Rn = log2

∣

∣

∣

∣

∣

1 + hH
n

(

hn̄hH
n̄ +

[

σ̂2
1I 0
0 σ̂2

2I

])

−1

hn

∣

∣

∣

∣

∣

, (6)

where hn =

[

h1,n

h2,n

]

and hn̄ =

[

h1,n̄

h2,n̄

]

.

V. COMPARISON OF THEORETICAL AND MEASURED

RATES

In this section, we compare the terminal rates that should

be achievable according to information theory to rates actually
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Fig. 4: Identification of interference scenarios to be discussed

in this paper.
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measured in the field trial described in Section II. In both

cases, we observe the performance achievable if detection and

decoding takes place non-cooperatively by the two BSs, or

jointly. The information theoretic numbers are computed for

each 12th sub-carrier and each 7th OFDM symbol according

to (5) and (6), using the channel coefficients and noise levels

obtained in the field trial. Here, the inherent assumption is that

the estimated channel corresponds to the real channel, and

that the receiver side has perfect CSIR, which clearly leads

to a strong overestimation of rates. In this work, however,

we are mainly interested in the gain of CoMP in different

scenarios, where the correlation between theoretically and

measured results is strong, as we will see in the sequel.

For rate expressions based on actual transmissions, we

collect statistics for the 5 different MCSs stated in Table II.

For each transmission of 20 TTIs, we then determine the MCS

that has led to the highest overall number of successfully trans-

mitted bits, and translate this quantity into a corresponding

average number of bits per channel use. Clearly, automatic

repeat-request (ARQ) concepts could help to improve the

reliability of transmission and hence increase achieved rates,

but they would lead to a more complex field trial setup. In

general, the rates based on field trial transmissions are of

course much lower than those based on information theory,

as the former are constrained through a very limited set of

MCSs and are deteriorated due to limited block lengths, multi-

cell channel estimation error, noise estimation error as well as

various RF impairments.

As stated in Section II, we have performed measurements

for various UE locations, yielding a variety of interference

scenarios. In order to characterize these, we introduce the

terms λ1 and λ2 that state the ratio of the average channel

gain of a UE to its assigned BS over the average channel gain

to the other BS, for UEs 1 and 2, respectively. A large value

means that a UE has a significantly stronger link to its own

BS than to the other one, a value of 0 dB corresponds to the

case where the UE is placed at the cell-edge between both

BSs, and a negative value (on a logarithmic scale) indicates

that the UE has a stronger gain to the neighboring BS than to

its own BS. For a subset of measurements, the λ values are

shown in Figure 4, where we have identified three clusters of

interference scenarios that will be observed separately in the

sequel:

• A: Scenarios of strong, symmetrical interference

• B: Scenarios of asymmetrical interference

• C: Scenarios where both UEs have a dominant link to

the same BS (in this case BS 2)

In Figure 6 we can see results for scenario A, where the left

plot refers to the case of Nbs = 1 and the right one to Nbs = 2.

Clearly, the gain of using joint multi-cell detection (red curves)

instead of non-cooperative detection (black and blue curves)

is large for Nbs = 1, as we have strong interference, and

each BS cannot spatially separate the two terminals by itself.

In information theory (solid curves), the gain is on the order

of 150%, and for field trial transmission (dashed curves), BS

cooperation can in fact strongly reduce the outage probability

of both terminals. In the case of Nbs = 2, BS cooperation

gains are smaller, but still correspond to about 50% in the

case of field trial transmission. Without BS-cooperation, we

can see that from an information theoretical point of view, it

is beneficial for UE 2 to be detected and decoded by BS 1 A .

While this appears counter-intuitive considering that UE 2
in most cases has a stronger link to its assigned BS 2 (see

Figure 4), the reason lies in the fact that the channel from both

UEs to BS 1 has better spatial properties. This is illustrated

in Figure 5, where the ratio of the first and second Eigenvalue

(i.e. similar to the definition of the condition number) of the

channel seen by BS 1 is as good (i.e. as low) as that of the

compound channel. For field trial transmission, however, we

can see that this BS-UE assignment is not beneficial B ,

which is due to the fact that the comparatively weak link

from UE 2 to BS 1 is subject to a strong channel estimation

error, such that its beforementioned spatial properties cannot

be reasonably exploited. Note that the reason why field trial

transmission can achieve larger rates than predicted through
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Fig. 6: Theoretical and measured UE rates for scenarios A of strong, symmetric interference.
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Fig. 7: Theoretical and measured UE rates for scenarios B of asymmetric interference.
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Fig. 8: Theoretical and measured UE rates for scenarios C of strong links to one BS.

This document is a preprint of: M. Grieger, P. Marsch, Z. Rong et al., “Field Trial Results for a Coordinated Multi-Point (CoMP) Uplink in Cellular Systems,” in Proceedings of
ITG/IEEE Workshop on Smart Antennas (WSA 2010), Bremen, Germany, Feb 2010. DOI:10.1109/WSA.2010.5456387

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



information theory at the very lower end of the CDF is due to

the fact that the histogram of information theoretical quantities

is calculated on a per-sub-carrier basis and hence subject to

a large variance, whereas the performance of implemented

schemes is only available on a TTI basis, where the interleaver

and decoder can alleviate the impact of some poor channel

realizations.

In Figure 7, we see results for scenario B, where UE 1
is placed close to the cell-edge, while UE 2 has a dominant

link to its assigned BS 2, creating little interference to BS 1.

Clearly, UE 2 can profit most from multi-cell joint detection

in this case C , while UE 1 can be detected and decoded by

its own BS 1 fairly free of interference regardless of whether

BS cooperation is used or not. The latter UE, however, profits

strongly from array gain and diversity D . As expected, both

aspects are less pronounced for Nbs = 2, but we can still

see a significant rate improvement for UE 2 E , while UE 1
profits from array and diversity gain F . Please note that the

reason why both UEs perform similarly in the case of field

trial transmission and CoMP is that the maximum possible

rate of 3.42 bits per channel use in our prototype platform has

been reached.

In Figure 8, we finally observe scenario C, where both UEs

are assigned to BS 2 (blue curve). Clearly, non-cooperative

detection is subject to significant interference for Nbs = 1,

and hence leads to 100% outage for both UEs under field

trial transmission. Interestingly, the outage for UE 2 can be

strongly decreased if multi-cell joint detection is used G , even

though the link from UE 2 to BS 1 appears to be of minor

importance. UE 1, however, cannot be detected, even under

cooperation. For Nbs = 2, average CoMP gains diminish from

a theoretical point of view H ; only a marginal array gain is

achieved. For field trial transmission, however, we can see that

UE 1 strongly benefits from cooperation I . It appears that

in this scenario, the links from UE 1 to BS 2 are significantly

weaker than those from UE 2 to BS 2, and the channel as

seen by BS 2 is often close to singular. In theory, where we

assume perfect CSI, it is still possible for BS 2 to spatially

separate both terminals, while this seems to fail for field trial

transmissions due to imperfect channel knowledge. Once BS

cooperation is used, channel estimation can also profit from

array gain and diversity, as e.g. noted in [13]. Note that field

trial transmission under cooperation once again reaches the

maximum possible rate of 3.42 bits per channel.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we observed the gains of coordinated multi-

point (CoMP) in field trial cellular scenarios of 2 base stations

and 2 terminals. We saw that theoretically predicted rate gains

are confirmed by those observed under field trial transmission,

if we consider that the gains of the latter are typically much

smaller due to the impact of imperfect channel estimation, a

limited number of usable modulation and coding schemes, and

various RF impairments. Furthermore, we used measurements

to validate the benefit of performing a fast-fading dependent

assignment of UEs to BSs, possibly in conjunction with the

option of intra-cell joint detection in the case of multiple

receive antennas per base station, as it is also suggested

from a theoretical point of view in [13]. In general, it seems

reasonable to expect median rate gains through CoMP on the

order of at least 50% and additional large diversity gains for a

large set of scenarios. These effects are leading to an increase

of fairness as well. It can be expected that these gains can be

further increased if more advanced signal processing is applied

in the future.

In future work, we plan to consider non-linear detection

schemes and to observe the trade-off between achievable rates

and the backhaul capacity required to achieve these. For

this, we will implement and evaluate different BS-cooperation

schemes as stated in [7], which mainly differ with regard to

the kind of information (and inherent quantization scheme)

between cooperating BSs. In the longer term, we plan to

address the central question of how often in a representative

middle-sized city certain interference scenarios arise for which

CoMP promises substantial gains at reasonable effort, and

what kind of BS cooperation schemes should ideally be used.
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