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Abstract—This work presents an investigation on the scalabil-
ity of a deep leaning (DL)-based blind transmitter positioning
system for addressing the multi transmitter localization (MLT)
problem. The proposed approach is able to estimate relative
coordinates of non-cooperative active transmitters based solely
on received signal strength measurements collected by a wireless
sensor network. A performance comparison with two other
solutions of the MLT problem are presented for demonstrating
the benefits with respect to scalability of the DL approach. Our
investigation aims at highlighting the potential of DL to be a
key technique that is able to provide a low complexity, accurate
and reliable transmitter positioning service for improving future
wireless communications systems.

Index Terms—Multi transmitter localization, network-side lo-
calization, wireless sensor network, received signal strength, deep
learning, positioning.

I. INTRODUCTION

N this paper a deep learning (DL)-based framework that

addresses the problem of estimating the relative position'
of multiple active transmitters within an area of interest using
received signal strength (RSS) measurements collected by a
wireless sensor network (WSN) as sole position information
source is presented. We focus on simultaneous blind trans-
mitter localization, which refers to a functionality that can be
implemented at the network side for enabling simultaneous
localization of multiple transmitters without prior assumption
on the transmission protocol, or propagation characteristics of
the environment. Therefore, this approach can be implemented
independently of specific wireless standards, and covers a
range of different applications, such as localizing interfering
nodes within a private wireless network.

Differently from the single transmitter case, where the WSN
collects RSS measurements coming from a single source,
the RSS obtained at each sensing unit (SU) when multiple
transmitters are active is a sum of the transmitted power from
different sources. Under this scenario, and assuming the often
used log-normal path loss model (PLM) given by (1), the RSS
at each SU has the distribution of a sum of log-normals. This
random variable does not have a closed-form density function

'The terms location and position are used interchangeably in this paper,
and they refer to the Cartesian coordinates of one or more active transmitters
within an area of interest, i.e., relative coordinates.

[1]. Hence, model-driven approaches rely on approximations
of this distribution for deriving position estimators, e.g., [2].
Moreover, hardware dependent nonlinearities that affect the
RSS measurement are not captured by (1). An analysis of
hardware related influences on RSS measurement has been
presented by A. Zannela in [3] together with guidelines for
dealing with the shortcomings stemming from these nonlinear-
ities and propagation effects. As the number of available SUs
largely influences the accuracy of the positioning algorithms,
it is reasonable to assume that inexpensive SUs with limited
hardware capabilities are preferred for implementing a dense
WSN. Consequently, the solutions of the multi transmitter
localization (MTL) problem that present high localization
accuracy also present a high degree of implementation com-
plexity due to the lack of tractable mathematical models. This
motivates the adoption of DL as an approach for addressing
this problem, since underling hardware-induced nonlinear
patterns can be identified from the data collected by the SUs.
Similar works on RF-based transmitter identification have
shown promising results [4], [5].

More recent and closely related works on DL-based MTL
often seek to represent position related information, i.e., RSS,
channel state information (CSI), time of arrival (ToA) or angle
of arrival (AoA), in formats that resemble the structure of
images, so aiming at taking advantage of the well-developed
convolutional neural network (CNN) architectures employed
in object recognition tasks [6], [7], [8]. In contrast, we argue
that a simpler, and consequently less computationally expen-
sive, deep neural network (DNN) architecture already suffices
to achieve good generalization performance for the MTL task.
In previous works, we proposed a DNN architecture using
solely fully connected nodes, and investigated its performance
when compared to classical and state-of-the-art approaches
[9]. In [10], we employed the proposed scheme to analyze its
localization performance when real-world RSS measurements
[11] are available, and to understand the achievable real-
time performance by employing such technique. The research
carried out in previous works now motivates the investigation
on the scalability of the DL approach for localization of
multiple simultaneous active transmitters.

The proposed approach is divided into two stages. Firstly,
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Fig. 1: Illustration of a wireless network hosting the DL-based
localization service. The RSS measurements are collected by
the SUs, which are spatially distributed in grid, and sent to
the central unit (CU), where the number and the relative
coordinates of the active transmitters are estimated using a
selection DNN models.

the number of active transmitters is estimated using a classi-
fication DNN model, and secondly the corresponding trans-
mitters’ coordinates are estimated by a regression DNN model
trained for a specific number of active transmitters. Both tasks
rely solely on RSS measurements collected by a WSN as
input information. The proposed architecture employed for
positioning is also used for estimating the number of active
transmitters present in the area of interest.

In this work, the proposed approach is compared against
two other approaches with different degrees of computational
complexity. Namely, (i) radio environment map localization
(REML) [12], where an interpolated RSS map of arbitrary
pixel resolution is constructed with the measurements col-
lected by the WSN. In the case of a single active transmitter,
the position of the active transmitters is then estimated as the
pixel coordinate that contains the highest RSS value, whereas
for MTL, high power regions are first identified, and the
corresponding transmitters’ coordinates are estimated as the
center of such regions; (i7) particle simulation (PS), where
the localization problem is modeled analogously to a physical
particle simulation [13].

The remainder of the paper is organized as follows: Section
IT presents the mathematical model that characterizes the
propagation phenomena. Section III describes the localization
algorithms. Section IV presents an analysis of the performance
achieved by the localization schemes. Finally, the paper is
concluded in Section V.

II. SYSTEM MODEL

As illustrated in Fig. 1, let us consider that within the area
of interest, N, SUs are placed in fixed locations and connected
to a CU forming a WSN. The SUs collect RSS measurements
in a frequency band for sufficient time to average out small
scale fading effects, and send them to a CU, where the number
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Fig. 2: Diagram of the two stage DL-based localization
scheme.

of active transmitters and their corresponding coordinates are
estimated.

Letp= [Py, -, PNS]T represent the measurement vector,
which contains the RSS values measured by N, SUs, where
P; = 10logo (p;) dBW, and the j-th SU measurement in
linear scale can be expressed as

N, p
d(u;,v;
pj = E Doi <( d j)> Wij, (D
=1

where NV, is the total number of active transmitters, pg; is
the received power at a reference distance dy from the -
th transmitter, J represents the path loss exponent, which
depends on the environment. u; £ [u;,,u;,|  contains the
unknown coordinates of the ¢-th transmitter in two dimensions,
however, extension to three dimensions is straightforward,
v = [vjm,fujy]T are the coordinates of the j-th SU, and
d(u;,v;) denotes the Euclidean distance between the i-th
transmitter and j-th SU. Lastly, w;; = 10"4/1% accounts for
the random power fluctuations due to multi-path propagation
and random movement, i.e., shadowing noise, where n;; are
the entries from a zero-mean Gaussian random vector n; with
covariance matrix C € RN:*Ns The spatial correlation of
the shadowing noise is modeled with an exponential decay.
Therefore, the entries of C are a function of the distances
among SUs and the decorrelation distance, which is assumed
to be in the order of 1 meter for indoor propagation [14].

III. LOCALIZATION APPROACHES
A. Deep Learning Based Localization

Our approach is divided into two steps, and it can be
classified as non-cooperative as the transmitters can be simul-
taneously active. Firstly, the number of active transmitters is
estimated. This task can be carried out by different techniques,
such as energy detection and cyclostationary feature detection
[15], [16], [17]. However, the proposed DNN architecture can
also be trained for this classification task with a modification
of its last layer, and loss function. Secondly, the estimation
of the coordinates is carried out by the DNN architecture
selected based on the outcome from the first step, i.e., a par-
ticular architecture is used depending on the number of active
transmitters to be localized. Note that the only architecture
modification needed is a different number of output units, e.g.,
for localizing two transmitters, the architecture requires four
output units for two dimensional positioning, and six units



TABLE I: DNN hyperparameters.

Hyperarameter Value

Number of hidden layers 3

Number of hidden units per layer 128

Validation split 80% training, 20% validation
Mini batch size 40

Regularization parameter (L2) 0.01

ELU

Adaptive moments (Adam)

Activation function of hidden units
Optimizer

Learning rate 10

Loss function mean squared error (MSE)
Weight initialization Xavier

for three dimensions. Both tasks can be modeled as super-
vised learning problems, given a data set with transmitters
coordinates, or number of active transmitters, and associated
RSS measurements. The approach is illustrated in Fig. 2.

The DNN architecture employed in this paper has been
proposed in our previous work [9], where we draw inspiration
from the well-investigated log-normal PLM that associates
RSS to the transmitter-receiver separation distance as a start-
ing point for selecting the architecture. This led to a fully
connected DNN, where the number of hidden layers is chosen
based on the number of nonlinear functions between the
transmitter position and the corresponding RSS measurements.
Observing (1), there is a two-fold nonlinear functional relation
between the transmitters coordinates and RSS measurements.
Moreover, taking into account the nonlinear effects induced
by the hardware, an architecture with 3 hidden layers was
selected. It is worth noting that, a single hidden layer archi-
tecture is capable of approximating any function given a suffi-
ciently large number of hidden units [18]. However, successful
practical examples of DL algorithms suggest that architectures
with multiple hidden layers are able to approximate complex
functions with significant less hidden units [19].

Differently from [9], the exponential linear unit (ELU) is
chosen as activation function instead of the rectified linear
unit (ReLU), since its output does not produces zero for
negative inputs, and thus deactivating neurons. Furthermore,
its gradient is continuous, and according to our most recent
experiments ELU performs slightly better than ReLU w.r.t.
localization accuracy. The hyper-parameters of the selected
architecture are presented in Table I. For obtaining the trans-
mitters’ coordinates, the last layer has a linear activation
function, and its number of units depends upon the number
of simultaneous active transmitters, i.e., twice the number of
transmitters for two dimensional positioning.

An ambiguity problem arises depending on how the data set
for training is organized. To illustrate this problem, let us as-
sume the presence of two transmitters, the same measurement
vector can be obtained when u = [ulm,uly,u%,u%} and
when u = [us,, u2,,u1,,u1,]. To avoid such problem in the
data set creation, the transmitter coordinates are ordered such
that transmitters with smaller indices have the smaller coor-

dinate values for a given example. In other words, the known
coordinates are arranged such that u; , wi, < U(iy1),,U(it1),-
Note that this does not pose a constraint on the functional-
ity of the proposed solution, since distinguishing individual
transmitters’ indexes might not be of interest for practical
applications, such as unauthorized transmitter localization.
The online computational complexity is represented by the
number of real multiplications required by the DNN estimator,
and it can be written w.r.t. the network architecture as
L-1
Cpnn = Z (Nl(f_l) + 1) N, 2
=1

where Nq(tl) represents the number of units in the [-th layer of
the network, L is the total number of layers including input
and output layers.

B. Radio Environment Map Localization (REML)

This localization approach divides the area of interest into
discrete regions with resolution R meters, and it uses an
estimated REM for obtaining the transmitters coordinates
[12]. The REM is acquired via ordinary Kriging interpolation,
where the RSS predictions at arbitrary pixel points are esti-
mated based on the second order statistics of the measured
RSS [20]. The resulting REM contains the estimated RSS
values for all pixels in the area using RSS measurements for
the pixels that contain the SUs.

Let P, = A,/R and P, = Ap,/R represent the total
number of pixels along the width and height of the area, where
A,, and A}, are the width and height in meters, respectively.
The total number of pixels within the area is K = P, X P
pixels. For avoiding RSS variation within one pixel, R has
to be greater than the decorrelation distance. The REM is
then stored in a matrix U € RPw*Pr Assuming a single
transmitter, the pixel coordinates are estimated by selecting
the element which contains the highest RSS value as

Opixel = argmax [U], ;, 3)

i

where the continuous space coordinates are obtained by
UrEML = Upixel /R. For the case of multiple transmitters,
histogram thresholding and image segmentation need to be
applied to U for distinguishing regions with significant RSS.
After this procedure, the transmitters pixel coordinates are
estimated as the pixel with highest RSS within each region. It
is worth noting that REML does not require previous knowl-
edge on the transmit power or number of active transmitters,
making it also practical for blind localization. The REML
computational complexity is given by

Cremr, = KN, log(N). €]

C. Particle Simulation

This localization method is based on a particle simula-
tion. Therefore, all SUs and active transmitters are assumed
to be particles. The SUs are fixed and initialized at their
corresponding known positions. In contrast, the transmitters



are initialized close to the SUs with the strongest RSS
measurements, and they can move freely during the algorithm
iterations. Initially, the RSS will be calculated for each SU
based on their current positions and the PLM. Since the initial
transmitter positions differ from the true positions, and there
are other influences such as shadowing, the calculated RSS
will differ from the measured RSS at the SUs. These errors
are interpreted as potentials that will imply some forces onto
the particles. Hence, the SUs that have measured more than
calculated become attractors, whereas the others will become
repellers. The forces induce movement on the free particles,
i.e., transmitters, such that they will iteratively move closer to
the best position that matches the measured RSS. Note that
in this scheme, the transmit power is assumed to be known in
advance. More details may be found in [13].

The algorithm iterations stop, if one of the following condi-
tions is met: (i) the number of iterations exceeds Njter = 500,
(ii) the total movement of the particles is smaller than 107
meters, or (iii) the Euclidian norm of the vector of errors
in receive powers is smaller than 10 dB. The computational
complexity is dominated by the PLM calculation for each pair
of transmitter and SU that is required to obtain the forces that
affect particles in each iteration. Hence, the computational
complexity is given by the product

CPS = NsNtNitcr (5)

IV. SIMULATION RESULTS REGARDING SCALABILITY

The performance shown in this section focuses on the scal-
ability of the DL approach with respect to sensor density, and
number of simultaneous active transmitters. As localization
performance metric, we present the cumulative distribution
function (CDF) of the localization error, where this error is
defined as the Euclidean distance between the true position
and the estimated one. For comparison we tested the data
with the approaches in [13], and in [12]. For the sake of
comparison with the more sophisticated techniques, the per-
formance obtained with random guess (RG) is also presented
as an upper bound for the positioning error. In this case, the
transmitters’ coordinates are estimated by drawing realizations
from a uniform distribution ranging between 0 and the area
limits.

The data sets used are obtained following the model de-
scribed by (1). The path loss exponent is fixed to 5 = 3.23,
which corresponds to an indoor space with relatively high
signal attenuation [21]. A maximum of four simultaneous
transmitters coexist in the area. This quantity is assumed to
be known a priori for Fig. 4, and it is used for selecting the
required DNN architecture for localization. Therefore, one
DNN model is trained for each N;. The coordinates of the
transmitters at each example are generated through an uniform
distribution between zero and the area limits. The shadowing
noise variance of the training and test data sets is fixed and
equal to 10 dB. Note that for training and testing, independent
data sets were generated. All relevant simulation parameters
are shown in Table II.

TABLE II: Simulation parameters.

Parameter Value
Fixed transmit power 20 dBm
Antenna radiation pattern Omnidirectional

Path loss exponent (3) 3.23

Shadowing noise variance UchB =10
Decorrelation distance 1 meter
Area size 20 x 20 m?

Number of SUs
Sensor density

16 (Figs. 3, 4, 5)
4 sensor/100 m2 (Figs. 3, 4, 5)

Number of active transmitters (/N¢) 1,2,3 and 4
SU arrangement Grid
Frequency of operation 2.4 GHz
REML pixel resolution 10 cm

PS maximum number of iterations 500
Number of training examples
Number of testing examples

3000 per active transmitter
3000 per active transmitter

Number of training epochs 1000

| 749 10 0 0 98.7%
25.0% | 0.3% | 0.0% | 0.0% | 1.3%

) 0 737 99 1 88.1%
<5 0.0% |24.6% | 3.3% | 0.0% | 11.9%
k 5| 0 | 1| sse | 227 709
3 0.0% | 0.4% | 19.3% | 7.6% | 29.1%

Q

8 AR 0 48 | 538 |91.8%
- 0.0% | 0.0% | 1.6% | 17.9% | 8.2%
100% | 97.2% | 79.8% | 70.2% | 86.8 %

0.0% | 2.8% |20.2% | 29.8% §13.2%

1 2 3 4

True class (Ny)

Fig. 3: Confusion matrix.

A. Multiple Active Transmitters

1) Classification Performance: Fig. 3 illustrates the clas-
sification performance of the DNN model assuming up to
four simultaneously active transmitters. The rightmost column
of the confusion matrix displays the precision of the model,
whereas the row in the bottom presents the recall values, and
the element at the bottom right displays the model’s overall
accuracy. As the number of active transmitters increases, the
classification performance decreases. Nevertheless, precision
and recall values do not fall below 70% for the total of 3000
examples tested.

2) Localization Performance: Fig. 4 shows the localization
performance of the algorithms assuming up to four simultane-
ous transmitters. The DL approach yields sub 4 meter accuracy
for all data tested, with performance degradation as the
number of active transmitters increases. In Fig. 4, one DNN
model was obtained for each number of simultaneously active
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Fig. 4: CDF of the positioning error with a varying number of
simultaneously active transmitters for the DL, PS and REML
algorithms.
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Fig. 5: Root mean squared error (RMSE) matrix of the
estimated coordinates when NN; is misclassified.

transmitters. The REML shows acceptable performance only
for N; < 2. For N; > 2, the likelihood that two transmitters
are close enough such that the regions of high RSS levels
cannot be distinguished is significant, and the localization
accuracy reduces for this reason. The PS method shows similar
performance when compared to DL for N; < 2. However,
PS presents slight localization performance degradation as the
number of transmitters increases.

Fig. 5 illustrates the RMSE matrix of the estimated coor-
dinates when [V, is misclassified. The RMSE is obtained by
using the closest coordinates when NN, is misclassified. As
it can be observed the largest positioning errors occur when
there are more active transmitters than what was obtained
in the classification stage, i.e, a model trained for a larger
N, performs better than a model trained for smaller N, in a
misclassification scenario. This result resonates with the idea
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Fig. 6: CDF of the positioning error assuming a constant
sensor density of 4 sensor/100 m> and N; = 1 for the DL
approach.

that a DNN model can only perform well when it is exposed
to data that it is similar to the data contained within the
training set. Correspondingly, the model trained for N; = 4
performs better than the model trained for N; = 1 when NV,
is misclassified. Furthermore, a joint analysis of Figs. 3 and 5
shows that when misclassification errors are more likely, i.e.,
larger Ny, the average positioning error is less degraded.

B. Sensor Density

Fig. 6 shows the localization performance of the DL ap-
proach for the single transmitter case assuming a constant
sensor density, i.e., as Ny increases the area size increases
proportionally in order to keep the ratio (A, x Ap)/Ns
constant. As can be observed, the resulting localization per-
formance remains also constant. This result indicates that the
localization performance observed in a specific scenario, i.e.,
area size and Ny, can be extrapolated to a more general setting.

Fig. 7 presents the localization accuracy averaged over sev-
eral positions across the area as a function of the SU density
in sensor/100 m?. Unsurprisingly, lower SU density leads to
lower localization accuracy for all localization algorithms.
Moreover, in the lower SU density DNN performs slightly
better than PS, this results can be attributed to the limited
number of iterations used in the particle simulation. In the
higher SU density regime, PS outperforms DNN also by a
small margin, since PS requires the extra apriori information
about the transmit power. Furthermore, for all algorithms the
gain in accuracy is relatively low for p > 15 sensor/100 m?,
which when compared to the cost increase in SUs installa-
tion, suggests that no significant improvement on localization
performance can be obtained at the expense of increasing SU
density.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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Fig. 7: RMSE of the estimated coordinates versus SU density
assuming a constant area of 20 by 20 m? and N, = 1 for the
DL, PS and REML approaches.

V. CONCLUSION

In this paper, the performance of a low complexity DL-
based localization framework has been investigated for po-
sitioning multiple transmitters in indoor scenarios. The ob-
served simulation results indicate that this approach is able
to address the challenging MTL problem, and its localiza-
tion performance scales well with an increasing number of
active transmitters. Furthermore, it has been observed that
evaluating the localization performance with respect to SU
density in scaling environments with similar characteristics
is sufficient to gather insights on the expected positioning
accuracy. Nevertheless, the localization performance saturates
after a certain SU density. This observation suggests that more
input information rather than exclusively RSS measurements
is required for achieving sub-meter localization accuracies.
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