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Abstract—Trustworthiness verification and integrity testing
have been identified as key challenges for the sixth generation
(6G) of mobile networks and its variety of envisioned features.
In this paper, these issues are addressed from a fundamental,
algorithmic point of view. For this purpose, the concept of Turing
machines is used which provides the fundamental performance
limits of digital computers. It is shown that, in general, trust-
worthiness and integrity cannot be verified by Turing machines
and therewith by today’s digital computers. In addition, the
trustworthiness problem is further shown to be non-Banach-
Mazur computable which is the weakest form of computability.
Neuromorphic computing has an enormous potential to overcome
the limitations of today’s digital hardware and, accordingly, it
is interesting to study the issues of trustworthiness verification
and integrity testing also for such powerful computing models.
In particular, as considerable progress in the hardware design
for neuromorphic computing has been achieved.

I. INTRODUCTION

As envisioned, the sixth generation (6G) of mobile net-
works will provide a variety of new features including joint
communications and sensing, post Shannon communication,
embedded and post quantum security, and many more [1].

These features impose new challenges on the design of
wireless communication systems. In particular, the Tactile
Internet will allow not only the control of data, but also of
physical and virtual objects. With such applications comes

This work of H. Boche was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the national initiative
on 6G Communication Systems through the research hub 6G-life under Grant
16KISK002, within the national initiative for Post Shannon Communication
(NewCom) under Grant 16KIS1003K, and the project Hardware Platforms
and Computing Models for Neuromorphic Computing (NeuroCM) under Grant
16ME0442. It has further received funding by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy as part of the project
6G Future Lab Bavaria as well as in part by the German Research Foundation
(DFG) within Germany’s Excellence Strategy EXC-2092 – 390781972. This
work of R. F. Schaefer was supported in part by the BMBF within NewCom
under Grant 16KIS1004 and in part by the DFG under Grant SCHA 1944/6-
1. This work of H. V. Poor was supported by the U.S. National Science
Foundation under Grant CCF-1908308. This work of G. P. Fettweis was
supported in part by the BMBF within 6G-Plattform under Grant 16KISK051.

the need to address the trustworthiness of the system and
its services. This has to be done in a new context as it is
envisioned that 6G will allow for localization of unprecedented
precision, sensing that goes beyond radio and camera sensing,
and also gesture recognition including emotions.

However, the significant improvement in sensing capabili-
ties also enables advanced spying opportunities, and the ques-
tion is then how these new (sensing) services can be provided
without compromising legal and societal privacy requirements.
As a consequence, trustworthiness is a key enabler for 6G
and must be understood including privacy, security, integrity,
resilience, reliability, availability, and device independence
[2]. The theory for the formalization of trustworthiness must
comprise different fields and many central questions and issues
are open to date, see e.g. [2]. In this paper, we address the
specific issue of algorithmic verification of trustworthiness
based on digital hardware.

The design of a computing platform for trustworthiness
poses several significant challenges. For example, standards of
cellular systems are written in English text. As such standards
are not machine readable for formal verification purposes, one
actually needs a description that allows for formal verification
and cross-check of implementation code. Such a process of
formal verification must extend to software patches and up-
dates as well, ensuring that the cellular infrastructure provides
only those services it is designed for and not serving other
interests. To this end, two conditions need to be satisfied:
readability of the system description and implementation as
well as formal verification. This is of crucial interest and
importance.

Today’s approaches to performance evaluation and ver-
ification are based on theoretical analyses and numerical
simulations. Due to the high complexity of modern wireless
communication systems, analytical approaches quickly reach
their limits. For example, the capacity region of the broadcast
channel remains unknown to date although it is a central
element of each wireless communication system.
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It is clear that this highly depends on the particular hardware
platform that is used for the integrity testing. In particular,
numerical simulations are usually done on digital computers.
To address this issue from a fundamental algorithmic point
of view, we use the concept of a Turing machine [3–5]
and the corresponding computability framework. The Turing
machine is a mathematical model of an abstract machine that
manipulates symbols on a strip of tape according to certain
given rules. It can simulate any given algorithm and therewith
provides a simple but very powerful model of computation.
Turing machines have no limitations on computational com-
plexity, unlimited computing capacity and storage, and execute
programs completely error-free. They are further equivalent to
the von Neumann-architecture without hardware limitations
and the theory of recursive functions, cf. also [6–10]. Ac-
cordingly, Turing machines provide fundamental performance
limits for today’s digital computers and are the ideal concept to
study whether or not trustworthiness verification and integrity
testing can be performed algorithmically in principle (without
putting any constraints on the computational complexity).

Trustworthiness verification and integrity testing of software
are becoming particularly relevant as there is the recent trend
towards shifting functionalities from the physical layer to
higher layers by enabling software-focused solutions. The
particular objective here is to create an infrastructure that is
capable of interconnecting highly heterogeneous networks to
support several different verticals. The concepts of software-
defined networking (SDN) [11] and network function virtu-
alization (NFV) [12] have been identified as key enablers
at all levels. The aim of such network virtualization is to
provide software-based solutions for functions, protocols, and
operations such that they run on general purpose hardware
and do not require specialized hardware anymore. This had
laid the groundwork for novel paradigms such as cloud and
edge/fog computing, unique and reconfigurable SDN-NFV
architectures, and end-to-end network slicing [13, 14].

Softwarization shows great potential in terms of flexibility
and cost reduction. However, at the same time it provides a
larger attack surface including all interaction points an attacker
can reach. This includes interfaces, protocols, and services
both in software and hardware. This further shows the ne-
cessity of formal verification to verify the trustworthiness and
the integrity of the system.

II. COMPUTABILITY FRAMEWORK

We first introduce the computability framework based on
Turing machines. For this we need some basic definitions and
concepts of computability which are briefly reviewed. The
concept of computability and computable real numbers was
first introduced by Turing in [3] and [4]. This provides the
needed background and notation to rigorously formalize the
readability and formal verification of wireless communication
systems on digital hardware platforms. The main crucial point
is that wireless systems have to deal with real-valued channels
and fading statistics that reflect the physical propagation of
signals described by the Maxwell Equations.

Recursive functions f : N → N map natural numbers
into natural numbers and are exactly those functions that are
computable by a Turing machine. They are the smallest class
of partial functions that includes the primitive functions (i.e.,
constant function, successor function, and projection function)
and is further closed under composition, primitive recursion,
and minimization. For a detailed introduction, we refer the
reader to [15] and [16]. With this, we call a sequence of
rational numbers (rn)n∈N a computable sequence if there exist
recursive functions a, b, s : N → N with b(n) 6= 0 for all
n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N; (1)

cf. [15, Def. 2.1 and 2.2] for a detailed treatment. A real
number x is said to be computable if there exists a computable
sequence of rational numbers (rn)n∈N and a recursive function
ϕ such that we have for all M ∈ N

|x− rn| < 2−M (2)

for all n ≥ ϕ(M). Thus, the computable real x is represented
by the pair ((rn)n∈N, ϕ). This form of convergence with
a computable control of the approximation error is called
effective convergence. Note that if a computable sequence
of real numbers (xn)n∈N converges effectively to a limit x,
then x is a computable real number, cf. [16]. Furthermore,
the set Rc of all computable real numbers is closed for
addition, subtraction, multiplication, and division (excluding
the division by zero). We denote the set of computable real
numbers by Rc. Based on this, we define the set of computable
probability distributions Pc(X ) as the set of all probability
distributions PX ∈ P(X ) such that PX(x) ∈ Rc, x ∈ X .
Further, let CHc(X ;Y) be the set of all computable channels,
i.e., for a channel W : X → P(Y) we have W (·|x) ∈ Pc(Y)
for every x ∈ X .

Definition 1. A function f : Rc → Rc is called Borel-Turing
computable if there exists an algorithm that gets for every x an
arbitrary representation ((rn)n∈N, ϕ) for it as input and then
computes a representation ((r̂n)n∈N, ϕ̂) for f(x).

Turing’s definition of computability conforms to the def-
inition of Borel computability above. Here, we particularly
consider the notion of a computable continuous function, cf.
[16, Def. A].

Definition 2 ([16]). Let Ic = [0, 1] ∩ Rc be the computable
unit interval. A function f : Ic → [0, 1] is called computable
continuous if:

1) f is sequentially computable, i.e., f maps every com-
putable sequence (xn)n∈N of points xn ∈ Ic into a
computable sequence (f(xn))n∈N of real numbers,

2) f is effectively uniformly continuous, i.e., there is a
recursive function d : N→ N such that for all x, y ∈ Ic
and all N ∈ N with ‖x − y‖ ≤ 1

d(N) it holds that
|f(x)− f(y)| ≤ 1

2N
.
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Remark 1. There are other forms of computability such as
Markov computability and Banach-Mazur computability, of
which the latter one is the weakest form of computability. In
particular, Borel or Markov computability both imply Banach-
Mazur computability, but not vice versa. For an overview of
the logical relations between different notions of computability
we again refer to [6] and, for example, [5].

We further need the concepts of a recursive set and a
recursively enumerable set as, for example, defined in [15].

Definition 3. A set A ⊂ N is called recursive if there exists
a computable function f such that f(x) = 1 if x ∈ A and
f(x) = 0 if x /∈ A.

Definition 4. A set A ⊂ N is recursively enumerable if there
exists a recursive function whose range is exactly A.

We have the following properties which will be crucial later
for proving the desired results; cf. also [15] for further details.
• A is recursive is equivalent to A is recursively enumer-

able and Ac is recursively enumerable.
• There exist recursively enumerable sets A ⊂ N that are

not recursive, i.e., Ac is not recursively enumerable. This
means there are no computable, i.e., recursive, functions
f : N→ Ac with [f(N)] = Ac.

Turing machines are extremely powerful compared to state-
of-the-art digital signal processing (DSP) and field gate pro-
grammable array (FPGA) platforms and even current super-
computers. It is the most general computing model and is
even capable of performing arbitrary exhaustive search tasks
on arbitrary large but finite structures. The complexity can
even grow faster than double-exponentially with the set of
parameters of the underlying communication system (such as
time, frequencies, transmit power, modulation scheme, etc.).

III. PROBLEM FORMULATION AND MAIN RESULT

In wireless communication systems, transmitters and re-
ceivers are separated in space. As a consequence, the at-
tack surface not only includes the hardware and software
implementations such as the antenna design, power amplifier,
baseband processors, software processors, etc., but also the
communication channels between the users. These are integral
parts of the communication system and are subject to various
attacks including eavesdropping, jamming attacks, denial-of-
service (DoS) attacks, non-legitimate sensing and others.

We want to study whether or not trustworthiness verification
and integrity testing are possible when taking into account
channels with practically relevant properties such as certain
signal-to-noise ratios (SNRs) or fading statistics. For this
purpose, we will introduce next some necessary notation and
concepts that will allow us to describe the channels with their
properties such that Turing machines can use these as inputs
for trustworthiness verification and integrity testing.

We assume a fixed transmitter-receiver pair and a prac-
tically relevant channel such as an additive white Gaussian
noise (AWGN) channel, Rayleigh fading channel, Nakagami-
m channel, etc. We further assume a family of channels that

is practically relevant and that depends on a single parameter
such as the SNR for AWGN channels or Rayleigh parameter
for Rayleigh fading channels. The case when the channel law
or fading statistics depend on more than one parameter is
discussed later after Theorem 1.

Now, we assume that the practically relevant parameters
of a family of channels is described by a certain interval
I = [a, b] ⊂ R, e.g., for AWGN channels the interval I
describes the relevant SNR regime. We further assume that
the corresponding mathematical relations and functions that
describe the channel are continuous in the parameter interval I.

The main goal of this work is study the problem of
trustworthiness verification and integrity testing. We observe
that this is a classification problem depending on the channel
parameters of all users. To this end, this does not necessarily
mean that we only have to decide on “trustworthy” or “non-
trustworthy”, but rather finitely many levels of trustworthiness
can be introduced depending on the context and the particular
requirements. The same applies to the integrity testing. Here,
the hardware and protocol specifications are fixed and given
and the task is to check whether or not the particular hardware
and protocols realize the desired behavior for the practically
relevant communication channels.

A trustworthiness verification task is said to be trivial, if
for all relevant channels, i.e., all relevant channel parameters,
the trustworthiness is either always satisfied or always not
satisfied.

We have seen in [17] and [18] that the verification of
resilience is trivial for a single transmitter-receiver pair if and
only if it is guaranteed that there are no jamming attacks on the
transmission. Since then, resilience against attacks is trivially
satisfied. Otherwise, there is always a practically relevant set
of channel parameters for which the attacker can successfully
launch a DoS attack. Note that this remains true for quantum
communication systems.

In this work, we address a corresponding question for
trustworthiness verification and integrity testing. In particular,
we want to understand whether or not these tasks can be solved
algorithmically by a Turing machine.

In the following, we consider a wireless communication
system that depends the parameters of the corresponding
communication channel. Let us assume that we have K of
these parameters, i.e., (τ1, τ2, ..., τK) ∈ I1× I2× ...× IK with
K ∈ N and Il = [al, bl], al, bl ∈ R, al < bl, 1 ≤ l ≤ K. As
discussed above, within the AWGN model these parameters
Il could represent the admissible transit power range for the
l-th transmitter-receiver pair or the possible noise power at the
receiver. For fading channels, these parameters could represent
the possible fading statistics.

We further assume that all possible K-tuples
(τ1, τ2, ..., τK) ∈ I1 × I2 × ... × IK ⊂ RK are practically
relevant. As a consequence, any convex combination is
relevant as well so that for

(τ
(1)
1 , τ

(1)
2 , ..., τ

(1)
K ) ∈ I1 × I2 × ...× IK ,
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(τ
(2)
1 , τ

(2)
2 , ..., τ

(2)
K ) ∈ I1 × I2 × ...× IK ,

and all λ ∈ [0, 1], the corresponding parameters(
(1− λ)τ

(1)
1 + λτ

(2)
1 , ..., (1− λ)τ

(1)
K + λτ

(2)
K

)
are practically relevant as well. In the following, we further
use the notation τ = (τ1, τ2, ..., τK) for simplicity.

Let S = {s1, s2, ..., sL} be a finite state set describing L
trustworthiness levels. Let Ftrust be a function that maps a set
I1× I2× ...× IK of parameters to S, i.e., Ftrust : I1× I2× ...×
IK → S. The function Ftrust need not necessarily be defined
for RK .

Definition 5. Let Ftrust : I1 × I2 × ... × IK → S =
{s1, s2, ..., sL} be a function that maps every parameters τ
to a corresponding state Ftrust(τ ) ∈ S. A trustworthiness veri-
fication problem is said to be non-trivial if there exist τ (1) and
τ (2) that lead to different states, i.e., Ftrust(τ

(1)) 6= Ftrust(τ
(2)).

In the following, we want to study trustworthiness ver-
ification on Turing machines. From the introduction and
discussion in Section II, it is clear that Turing machines
can only work with computable real numbers and parameters
as well as computable channels as inputs. Accordingly, let
TFtrust be a Turing machine for the classification task Ftrust,
i.e., TFtrust is defined for the set of computable parameters
Ic,1 × Ic,2 × ... × Ic,K ⊂ RK

c . Note that TFtrust need not
necessarily be defined for channels from RK

c that are not in
the set of computable parameters. The following result shows
that, in general, there is no Turing machine TFtrust or algorithm
that can solve a non-trivial classification problem Ftrust.

Theorem 1. For all wireless communication systems for which
trustworthiness verification is non-trivial, the trustworthiness
cannot be verified by Turing machines. The same remains true
for the integrity testing.

Sketch of Proof: The key idea of the proof is the
following: If a non-trivial trustworthiness problem would be
verifiable by a Turing machine, then we would be able to
construct another Turing machine based on the previous one
that can solve the halting problem for a certain set A ⊂ N.
However, for this certain subset A it is known that the halting
problem cannot be solved by Turing machines. This will then
prove the desired result by contradiction. A more detailed
sketch of the proof is given in the appendix.

Some discussion is in order. In Theorem 1 we have con-
sidered channel parameters of the form I1 × ...× IK . From a
practical point of view, this is the simplest form of dependency.
We note that the proof of Theorem 1 is general in the sense
that it allows arbitrary convex sets of parameters. For sake
of presentation, we show that already for the simplest case
of dependencies the trustworthiness verification and integrity
testing cannot be solved on digital computers.

In Theorem 1, only digital hardware platforms are used. One
may ask the question what happens if the trustworthiness veri-
fication and integrity testing are performed on other computing
platforms. There is the concept of Blum-Shub-Smale (BSS)

machines [19–21] which is the second-most used computing
model after Turing machines. It is more powerful than Turing
machines as it is able to work exactly with real numbers.
Obviously, it is not clear if such a computing machine can
be realized with today’s hardware technology, since it would
require the processing and storage of arbitrary real numbers.
It provides the basis for neuromorphic or quantum computing.

In this context, jamming and particularly DoS attacks have
been studied in [17, 18] and it has been shown for different
communication scenarios that DoS attacks cannot be detected
by Turing machines.

The verification of whether or not DoS attacks can be
performed by adversaries is a central problem for the resilience
verification and therewith also for trustworthiness. Let us
consider the scenario with a transmitter (Alice), a receiver
(Bob), and a Jammer that tries to disturb the transmission
from Alice to Bob by transmitting an own jamming sequence.
A malevolent Jammer will try to perform a DoS attack by
completely disrupting the communication.

We briefly discuss the following example. Let X , Y , and
Z be discrete alphabets of Alice, Bob, and the Jammer,
respectively. The receive probability of y ∈ Y at Bob is
specified by W (y|x, z) and depends on the legitimate input
of Alice and the jamming input z ∈ Z . In [17] and [18],
the detectability of DoS attacks on Turing machines is stud-
ied. The potential Turing machine for the detection of such
attacks and therewith for the verification of resilience gets the
communication channel as input and then decides whether or
not a DoS attack is possible.

As an example, for |Y| = 3, |X | = 2, |Z| = 2 there
are channels for which a DoS attack is possible, cf. [17, 18]
for a detailed construction of such channels. This means that
we have a non-trivial classification problem for resilience in
this case and therewith a non-trivial verification problem for
trustworthiness. As a conclusion, the verification of resilience
with Turing machines is not possible in this case. Note that
numerous techniques and approaches for the detection of DoS
attacks have been proposed in the literature. However, [17]
shows that these techniques are not sufficient for a guaranteed
detection of DoS attacks.

On the other hand, BSS machines enable the detection of
DoS attacks on classical [22] and quantum communication
systems [23]. Finally, we note that currently, there is great
effort in the semiconductor industry to develop chips that
enable neuromorphic computing.

Next, we will further discuss a stronger result from which
Theorem 1 then follows. To this end, we consider a wireless
communication system with parameters I1 × ... × IK and
an arbitrary trustworthiness problem Ftrust with |S| possible
trustworthiness levels, where |S| ≥ 2 being finite. Then,
Ftrust : I1 × ...× IK → S is a well defined function.

Theorem 1 says that no non-trivial function Ftrust is Turing
computable, i.e., there is no algorithm (or Turing machine)
that can compute the output Ftrust(τ ) ∈ S for an input τ ∈
I1 × ...× IK . We will show the following result.
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Theorem 2. Let Ftrust be an arbitrary non-trivial trustworthi-
ness problem for a wireless communication system. Then Ftrust

is not Banach-Mazur computable.

Sketch of Proof: The key idea of the proof is the
following: We assume that there are a set of parameters
Ic,1 × ... × Ic,K and a set of trustworthiness levels S of a
wireless system for which the corresponding function Ftrust
is Banach-Mazur computable. For this function, we can then
find a suitable recursively enumerable set A ⊂ N that is not
recursive. This implies the existence of a Turing machine TA
that decides for each k ∈ N whether k ∈ A or k /∈ A. But
this is not possible establishing a contradiction. The detailed
proof is omitted due to space constraints.

Since every Turing computable function is also Banach-
Mazur computable (but not vice versa), Theorem 2 immedi-
ately proves Theorem 1.

Interestingly, it can be shown this task is not solvable on a
Turing machine, but can be solved on suitable neuromorphic
computers such as BSS machines. Therefore, it would be inter-
esting to study whether or not such neuromorphic computers
are capable of verifying the trustworthiness, i.e., by computing
the function Ftrust.

IV. DISCUSSION

In this paper, we have studied the problems of trustworthi-
ness verification and integrity testing for computable channels
and computable channel parameters respectively. The restric-
tion to computable real numbers is necessary as any digital
hardware platform (or Turing machine) requires computable
real numbers as inputs. One may think that this restriction is
the reason for the “no-go” result in Theorem 1.

For the theoretical analysis, more powerful Turing machines
have been proposed that obtain their inputs from an oracle.
Here, for each real parameter, the Turing machine obtains
a converging sequence of rational numbers as input. Such a
sequence exists always, but cannot be characterized algorith-
mically in general. However, also in this case, trustworthiness
verification is not possible on Turing machines due to the
following reasoning: If one uses only computable inputs for an
oracle Turing machine, then it is not necessary at all to use an
oracle. We obtain the very same results and, as a consequence,
oracle Turing machines does not help to make trustworthiness
verification and integrity testing possible.

To date, digital hardware is the only computing hardware
platform for practical systems. Unfortunately, its capability
for the requirements of provable, i.e., guaranteed, performance
such as correctness for decision processes is rather limited. For
example, for remote state estimation and stabilization via noisy
communication channels, a Turing machine cannot decide
whether or not an unstable linear system can be controlled
[24, 25]. This is a central task for digital twins.

We already have seen that DoS attacks can be detected by
BSS machines and therewith by more powerful neuromorphic
computing hardware. In addition, the constructions used in the
proof of Theorem 1 that are not solvable on Turing machines,

become solvable for neuromorphic computing models. In [26]
it has been shown that BSS machines are always capable
of deciding whether or not a linear system can be stabilized
via noisy communication channels. Therefore, it is interesting
to study the trustworthiness verification problem also for
more powerful computing models and new technologies. In
particular, as there has been significant progress recently by
the industry in the development of neuromorphic computing
hardware platforms.
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APPENDIX

Here, we present a sketch of proof for Theorem 1. The
desired result is proven by showing that every non-trivial
trustworthiness problem Ftrust : I1 × I2 × ...× IK → S is not
algorithmically solvable, i.e., there exists no Turing machine
TFtrust that takes the parameters τ as inputs and outputs the
corresponding state F (τ ) ∈ S.

We prove the desired result by contradiction. We assume
that there is a non-trivial trustworthiness problem Ftrust : I1 ×
I2 × ... × IK → {s1, ..., sL}, L ∈ N, such that there exists a
Turing machine TFtrust for which we have TFtrust(τ ) = Ftrust(τ )
for all τ ∈ Ic,1 × Ic,2 × ...× Ic,K ⊂ RK

c .
Further, for S = {s1, s2, ..., sL} with L > 2 we can

construct a Turing machine T̄Ftrust that solves a non-trivial
binary trustworthiness task as follows. For L > 2, there exist
some τ (i) and τ (j) with Ftrust(τ

(i)) = si 6= sj = F (τ (j)).
Now we choose the state set Ŝ = S1 ∪ S2 with S1 = {si}
and S2 =

⋃
j 6=i{sj}. We have S1 ∩ S2 = ∅ and consider

the trustworthiness problem F̂trust : I1 × I2 × ... × IK → Ŝ
with F̂trust(τ ) ∈ S1 ⇔ Ftrust(τ ) = si and F̂trust(τ ) ∈
S2 ⇔ Ftrust(τ ) = sj for sj 6= si. This yields a non-trivial
trustworthiness verification task for the binary case L = 2.
Thus, if there would exist a Turing machine TFtrust for L > 2,
then the modified Turing machine T̂F̂trust

with

T̂F̂trust
(τ ) =

{
si if TFtrust(τ ) = si

sj if TFtrust(τ ) ∈ {s1, ..., sL}\{si}
(3)

would solve the corresponding binary problem. Without loss
of generality, we accordingly assume only L = 2 different
trustworthiness levels, i.e., S = {s1, s2} in the following.

Now, we prove the binary case by contradiction, i.e., we
assume that there exists a non-trivial trustworthiness problem
Ftrust : I1×I2×...×IK → {s1, s2} such that there exists a Tur-
ing machine TFtrust that correctly outputs TFtrust(τ ) = Ftrust(τ )
for all τ ∈ Ic,1 × Ic,2 × ... × Ic,K . Since Ftrust is non-trivial,
there must exist some τ (1), τ (2) ∈ Ic,1× Ic,2× ...× Ic,K with
Ftrust(τ

(1)) 6= Ftrust(τ
(2)).

Now, the proof idea is as follows. For λ ∈ [0, 1] ∩ Rc

we consider for τ (λ) = (1 − λ)τ (1) + λτ (2) the function
Ftrust(τ (λ)). Now, we construct two computable sequences
(λn)n∈N and (λn)n∈N where the former is monotonically
increasing and the latter monotonically decreasing so that both
converge to a number λ∗ ∈ [0, 1] where λ∗ is a computable
real number. Then, we either have

Ftrust(τ (λn)) = Ftrust(τ
(1)), n ∈ N, (4a)

Ftrust(τ (λ∗)) = Ftrust(τ
(2)) (4b)

or

Ftrust(τ (λn)) = Ftrust(τ
(2)), n ∈ N, (5a)

Ftrust(τ (λ∗)) = Ftrust(τ
(1)). (5b)

For λ = 1
2 we must either have Ftrust(τ ( 1

2 )) = Ftrust(τ
(1)) or

Ftrust(τ ( 1
2 )) = Ftrust(τ

(2)).
If the first case is true, then we set λ1 = 1

2 and λ1 = 1. If
the second case is true, then we set λ1 = 0 and λ1 = 1

2 .
Let A ⊂ N be an arbitrary recursively enumerable set that

is not recursive. With the definition of recursively enumerable
sets, cf. Definition 4, we can construct a total function g, i.e.,
domain(g) = N, such that the range of g is range(g) = Ac

and g is recursive and therewith a computable function.
Furthermore, without loss of generality, we can require that
g : N→ A is a one-to-one mapping from N to A.

Next, we use a similar construction as in [17] and [27]
which relies on a construction of Pour-El, cf. Case I on
page 336 in [28]. For every (n,m) ∈ N × N we define the
computable function q : N× N→ N as

q(n,m) =

{
2m+2 n /∈ {g(0), ..., g(2m+2)}
r n ∈ {g(0), ..., g(2m+2)} and g(r) = n.

(6)

Note that r above is unique. Since A is recursively enu-
merable, the function q is indeed recursive and therewith
computable.

For n ∈ N we define the sequence (λ̂(n))n∈N with

λ∗n =

{
λ∗ if n ∈ Ac

λr if n ∈ A and g(r) = n.

Note that for n ∈ A there can only be a single r with g(r) = n.
One can now show that the double sequence

(λq(n,m))(n,m)∈N×N effectively converges for m → ∞
to the sequence (λ∗n)n∈N. Then the sequence (λ∗n)n∈N is a
computable sequence and therewith (Ftrust(λ

∗
n))n∈N must be

a computable sequences as well, since Ftrust must be Turing
computable by assumption. Now, for n ∈ N we have

Ftrust(λ
∗
n) =

{
Ftrust(τ 2) if n ∈ Ac

Ftrust(τ 1) if n ∈ A.

We can use the computable sequence (Ftrust(λ
∗
n))n∈N to find an

algorithm that decides for n ∈ N whether n ∈ A or n ∈ Ac

is satisfied. This would imply that the set A is recursively
enumerable, which cannot be the case. This shows that Ftrust
cannot be Turing computable completing the proof. �
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